311.12/291.48 WORST_CASE(Omega(n^1), ?) 311.12/291.49 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 311.12/291.49 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 311.12/291.49 311.12/291.49 311.12/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.12/291.49 311.12/291.49 (0) CpxTRS 311.12/291.49 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 311.12/291.49 (2) CpxTRS 311.12/291.49 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 311.12/291.49 (4) typed CpxTrs 311.12/291.49 (5) OrderProof [LOWER BOUND(ID), 0 ms] 311.12/291.49 (6) typed CpxTrs 311.12/291.49 (7) RewriteLemmaProof [LOWER BOUND(ID), 287 ms] 311.12/291.49 (8) BEST 311.12/291.49 (9) proven lower bound 311.12/291.49 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 311.12/291.49 (11) BOUNDS(n^1, INF) 311.12/291.49 (12) typed CpxTrs 311.12/291.49 (13) RewriteLemmaProof [LOWER BOUND(ID), 76 ms] 311.12/291.49 (14) typed CpxTrs 311.12/291.49 (15) RewriteLemmaProof [LOWER BOUND(ID), 44 ms] 311.12/291.49 (16) typed CpxTrs 311.12/291.49 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (0) 311.12/291.49 Obligation: 311.12/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.12/291.49 311.12/291.49 311.12/291.49 The TRS R consists of the following rules: 311.12/291.49 311.12/291.49 gt(0, y) -> false 311.12/291.49 gt(s(x), 0) -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0, y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0) -> 0 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0) 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 S is empty. 311.12/291.49 Rewrite Strategy: FULL 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 311.12/291.49 Renamed function symbols to avoid clashes with predefined symbol. 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (2) 311.12/291.49 Obligation: 311.12/291.49 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.12/291.49 311.12/291.49 311.12/291.49 The TRS R consists of the following rules: 311.12/291.49 311.12/291.49 gt(0', y) -> false 311.12/291.49 gt(s(x), 0') -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0', y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0') -> 0' 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0') 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 S is empty. 311.12/291.49 Rewrite Strategy: FULL 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 311.12/291.49 Infered types. 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (4) 311.12/291.49 Obligation: 311.12/291.49 TRS: 311.12/291.49 Rules: 311.12/291.49 gt(0', y) -> false 311.12/291.49 gt(s(x), 0') -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0', y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0') -> 0' 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0') 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 Types: 311.12/291.49 gt :: 0':s -> 0':s -> false:true 311.12/291.49 0' :: 0':s 311.12/291.49 false :: false:true 311.12/291.49 s :: 0':s -> 0':s 311.12/291.49 true :: false:true 311.12/291.49 plus :: 0':s -> 0':s -> 0':s 311.12/291.49 double :: 0':s -> 0':s 311.12/291.49 average :: 0':s -> 0':s -> 0':s 311.12/291.49 aver :: 0':s -> 0':s -> 0':s 311.12/291.49 if :: false:true -> 0':s -> 0':s -> 0':s 311.12/291.49 hole_false:true1_0 :: false:true 311.12/291.49 hole_0':s2_0 :: 0':s 311.12/291.49 gen_0':s3_0 :: Nat -> 0':s 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (5) OrderProof (LOWER BOUND(ID)) 311.12/291.49 Heuristically decided to analyse the following defined symbols: 311.12/291.49 gt, plus, double, aver 311.12/291.49 311.12/291.49 They will be analysed ascendingly in the following order: 311.12/291.49 gt < aver 311.12/291.49 double < aver 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (6) 311.12/291.49 Obligation: 311.12/291.49 TRS: 311.12/291.49 Rules: 311.12/291.49 gt(0', y) -> false 311.12/291.49 gt(s(x), 0') -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0', y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0') -> 0' 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0') 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 Types: 311.12/291.49 gt :: 0':s -> 0':s -> false:true 311.12/291.49 0' :: 0':s 311.12/291.49 false :: false:true 311.12/291.49 s :: 0':s -> 0':s 311.12/291.49 true :: false:true 311.12/291.49 plus :: 0':s -> 0':s -> 0':s 311.12/291.49 double :: 0':s -> 0':s 311.12/291.49 average :: 0':s -> 0':s -> 0':s 311.12/291.49 aver :: 0':s -> 0':s -> 0':s 311.12/291.49 if :: false:true -> 0':s -> 0':s -> 0':s 311.12/291.49 hole_false:true1_0 :: false:true 311.12/291.49 hole_0':s2_0 :: 0':s 311.12/291.49 gen_0':s3_0 :: Nat -> 0':s 311.12/291.49 311.12/291.49 311.12/291.49 Generator Equations: 311.12/291.49 gen_0':s3_0(0) <=> 0' 311.12/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 311.12/291.49 311.12/291.49 311.12/291.49 The following defined symbols remain to be analysed: 311.12/291.49 gt, plus, double, aver 311.12/291.49 311.12/291.49 They will be analysed ascendingly in the following order: 311.12/291.49 gt < aver 311.12/291.49 double < aver 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (7) RewriteLemmaProof (LOWER BOUND(ID)) 311.12/291.49 Proved the following rewrite lemma: 311.12/291.49 gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) 311.12/291.49 311.12/291.49 Induction Base: 311.12/291.49 gt(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 311.12/291.49 false 311.12/291.49 311.12/291.49 Induction Step: 311.12/291.49 gt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 311.12/291.49 gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 311.12/291.49 false 311.12/291.49 311.12/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (8) 311.12/291.49 Complex Obligation (BEST) 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (9) 311.12/291.49 Obligation: 311.12/291.49 Proved the lower bound n^1 for the following obligation: 311.12/291.49 311.12/291.49 TRS: 311.12/291.49 Rules: 311.12/291.49 gt(0', y) -> false 311.12/291.49 gt(s(x), 0') -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0', y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0') -> 0' 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0') 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 Types: 311.12/291.49 gt :: 0':s -> 0':s -> false:true 311.12/291.49 0' :: 0':s 311.12/291.49 false :: false:true 311.12/291.49 s :: 0':s -> 0':s 311.12/291.49 true :: false:true 311.12/291.49 plus :: 0':s -> 0':s -> 0':s 311.12/291.49 double :: 0':s -> 0':s 311.12/291.49 average :: 0':s -> 0':s -> 0':s 311.12/291.49 aver :: 0':s -> 0':s -> 0':s 311.12/291.49 if :: false:true -> 0':s -> 0':s -> 0':s 311.12/291.49 hole_false:true1_0 :: false:true 311.12/291.49 hole_0':s2_0 :: 0':s 311.12/291.49 gen_0':s3_0 :: Nat -> 0':s 311.12/291.49 311.12/291.49 311.12/291.49 Generator Equations: 311.12/291.49 gen_0':s3_0(0) <=> 0' 311.12/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 311.12/291.49 311.12/291.49 311.12/291.49 The following defined symbols remain to be analysed: 311.12/291.49 gt, plus, double, aver 311.12/291.49 311.12/291.49 They will be analysed ascendingly in the following order: 311.12/291.49 gt < aver 311.12/291.49 double < aver 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (10) LowerBoundPropagationProof (FINISHED) 311.12/291.49 Propagated lower bound. 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (11) 311.12/291.49 BOUNDS(n^1, INF) 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (12) 311.12/291.49 Obligation: 311.12/291.49 TRS: 311.12/291.49 Rules: 311.12/291.49 gt(0', y) -> false 311.12/291.49 gt(s(x), 0') -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0', y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0') -> 0' 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0') 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 Types: 311.12/291.49 gt :: 0':s -> 0':s -> false:true 311.12/291.49 0' :: 0':s 311.12/291.49 false :: false:true 311.12/291.49 s :: 0':s -> 0':s 311.12/291.49 true :: false:true 311.12/291.49 plus :: 0':s -> 0':s -> 0':s 311.12/291.49 double :: 0':s -> 0':s 311.12/291.49 average :: 0':s -> 0':s -> 0':s 311.12/291.49 aver :: 0':s -> 0':s -> 0':s 311.12/291.49 if :: false:true -> 0':s -> 0':s -> 0':s 311.12/291.49 hole_false:true1_0 :: false:true 311.12/291.49 hole_0':s2_0 :: 0':s 311.12/291.49 gen_0':s3_0 :: Nat -> 0':s 311.12/291.49 311.12/291.49 311.12/291.49 Lemmas: 311.12/291.49 gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) 311.12/291.49 311.12/291.49 311.12/291.49 Generator Equations: 311.12/291.49 gen_0':s3_0(0) <=> 0' 311.12/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 311.12/291.49 311.12/291.49 311.12/291.49 The following defined symbols remain to be analysed: 311.12/291.49 plus, double, aver 311.12/291.49 311.12/291.49 They will be analysed ascendingly in the following order: 311.12/291.49 double < aver 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (13) RewriteLemmaProof (LOWER BOUND(ID)) 311.12/291.49 Proved the following rewrite lemma: 311.12/291.49 plus(gen_0':s3_0(n258_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n258_0, b)), rt in Omega(1 + n258_0) 311.12/291.49 311.12/291.49 Induction Base: 311.12/291.49 plus(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 311.12/291.49 gen_0':s3_0(b) 311.12/291.49 311.12/291.49 Induction Step: 311.12/291.49 plus(gen_0':s3_0(+(n258_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) 311.12/291.49 s(plus(gen_0':s3_0(n258_0), gen_0':s3_0(b))) ->_IH 311.12/291.49 s(gen_0':s3_0(+(b, c259_0))) 311.12/291.49 311.12/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (14) 311.12/291.49 Obligation: 311.12/291.49 TRS: 311.12/291.49 Rules: 311.12/291.49 gt(0', y) -> false 311.12/291.49 gt(s(x), 0') -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0', y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0') -> 0' 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0') 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 Types: 311.12/291.49 gt :: 0':s -> 0':s -> false:true 311.12/291.49 0' :: 0':s 311.12/291.49 false :: false:true 311.12/291.49 s :: 0':s -> 0':s 311.12/291.49 true :: false:true 311.12/291.49 plus :: 0':s -> 0':s -> 0':s 311.12/291.49 double :: 0':s -> 0':s 311.12/291.49 average :: 0':s -> 0':s -> 0':s 311.12/291.49 aver :: 0':s -> 0':s -> 0':s 311.12/291.49 if :: false:true -> 0':s -> 0':s -> 0':s 311.12/291.49 hole_false:true1_0 :: false:true 311.12/291.49 hole_0':s2_0 :: 0':s 311.12/291.49 gen_0':s3_0 :: Nat -> 0':s 311.12/291.49 311.12/291.49 311.12/291.49 Lemmas: 311.12/291.49 gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) 311.12/291.49 plus(gen_0':s3_0(n258_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n258_0, b)), rt in Omega(1 + n258_0) 311.12/291.49 311.12/291.49 311.12/291.49 Generator Equations: 311.12/291.49 gen_0':s3_0(0) <=> 0' 311.12/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 311.12/291.49 311.12/291.49 311.12/291.49 The following defined symbols remain to be analysed: 311.12/291.49 double, aver 311.12/291.49 311.12/291.49 They will be analysed ascendingly in the following order: 311.12/291.49 double < aver 311.12/291.49 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (15) RewriteLemmaProof (LOWER BOUND(ID)) 311.12/291.49 Proved the following rewrite lemma: 311.12/291.49 double(gen_0':s3_0(n801_0)) -> gen_0':s3_0(*(2, n801_0)), rt in Omega(1 + n801_0) 311.12/291.49 311.12/291.49 Induction Base: 311.12/291.49 double(gen_0':s3_0(0)) ->_R^Omega(1) 311.12/291.49 0' 311.12/291.49 311.12/291.49 Induction Step: 311.12/291.49 double(gen_0':s3_0(+(n801_0, 1))) ->_R^Omega(1) 311.12/291.49 s(s(double(gen_0':s3_0(n801_0)))) ->_IH 311.12/291.49 s(s(gen_0':s3_0(*(2, c802_0)))) 311.12/291.49 311.12/291.49 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.12/291.49 ---------------------------------------- 311.12/291.49 311.12/291.49 (16) 311.12/291.49 Obligation: 311.12/291.49 TRS: 311.12/291.49 Rules: 311.12/291.49 gt(0', y) -> false 311.12/291.49 gt(s(x), 0') -> true 311.12/291.49 gt(s(x), s(y)) -> gt(x, y) 311.12/291.49 plus(0', y) -> y 311.12/291.49 plus(s(x), y) -> s(plus(x, y)) 311.12/291.49 double(0') -> 0' 311.12/291.49 double(s(x)) -> s(s(double(x))) 311.12/291.49 average(x, y) -> aver(plus(x, y), 0') 311.12/291.49 aver(sum, z) -> if(gt(sum, double(z)), sum, z) 311.12/291.49 if(true, sum, z) -> aver(sum, s(z)) 311.12/291.49 if(false, sum, z) -> z 311.12/291.49 311.12/291.49 Types: 311.12/291.49 gt :: 0':s -> 0':s -> false:true 311.12/291.49 0' :: 0':s 311.12/291.49 false :: false:true 311.12/291.49 s :: 0':s -> 0':s 311.12/291.49 true :: false:true 311.12/291.49 plus :: 0':s -> 0':s -> 0':s 311.12/291.49 double :: 0':s -> 0':s 311.12/291.49 average :: 0':s -> 0':s -> 0':s 311.12/291.49 aver :: 0':s -> 0':s -> 0':s 311.12/291.49 if :: false:true -> 0':s -> 0':s -> 0':s 311.12/291.49 hole_false:true1_0 :: false:true 311.12/291.49 hole_0':s2_0 :: 0':s 311.12/291.49 gen_0':s3_0 :: Nat -> 0':s 311.12/291.49 311.12/291.49 311.12/291.49 Lemmas: 311.12/291.49 gt(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> false, rt in Omega(1 + n5_0) 311.12/291.49 plus(gen_0':s3_0(n258_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n258_0, b)), rt in Omega(1 + n258_0) 311.12/291.49 double(gen_0':s3_0(n801_0)) -> gen_0':s3_0(*(2, n801_0)), rt in Omega(1 + n801_0) 311.12/291.49 311.12/291.49 311.12/291.49 Generator Equations: 311.12/291.49 gen_0':s3_0(0) <=> 0' 311.12/291.49 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 311.12/291.49 311.12/291.49 311.12/291.49 The following defined symbols remain to be analysed: 311.12/291.49 aver 311.21/291.53 EOF