318.14/291.49 WORST_CASE(Omega(n^1), ?) 318.14/291.50 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 318.14/291.50 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 318.14/291.50 318.14/291.50 318.14/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 318.14/291.50 318.14/291.50 (0) CpxTRS 318.14/291.50 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 318.14/291.50 (2) TRS for Loop Detection 318.14/291.50 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 318.14/291.50 (4) BEST 318.14/291.50 (5) proven lower bound 318.14/291.50 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 318.14/291.50 (7) BOUNDS(n^1, INF) 318.14/291.50 (8) TRS for Loop Detection 318.14/291.50 318.14/291.50 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (0) 318.14/291.50 Obligation: 318.14/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 318.14/291.50 318.14/291.50 318.14/291.50 The TRS R consists of the following rules: 318.14/291.50 318.14/291.50 half(0) -> 0 318.14/291.50 half(s(0)) -> 0 318.14/291.50 half(s(s(x))) -> s(half(x)) 318.14/291.50 inc(0) -> 0 318.14/291.50 inc(s(x)) -> s(inc(x)) 318.14/291.50 zero(0) -> true 318.14/291.50 zero(s(x)) -> false 318.14/291.50 p(0) -> 0 318.14/291.50 p(s(x)) -> x 318.14/291.50 bits(x) -> bitIter(x, 0) 318.14/291.50 bitIter(x, y) -> if(zero(x), x, inc(y)) 318.14/291.50 if(true, x, y) -> p(y) 318.14/291.50 if(false, x, y) -> bitIter(half(x), y) 318.14/291.50 318.14/291.50 S is empty. 318.14/291.50 Rewrite Strategy: FULL 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 318.14/291.50 Transformed a relative TRS into a decreasing-loop problem. 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (2) 318.14/291.50 Obligation: 318.14/291.50 Analyzing the following TRS for decreasing loops: 318.14/291.50 318.14/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 318.14/291.50 318.14/291.50 318.14/291.50 The TRS R consists of the following rules: 318.14/291.50 318.14/291.50 half(0) -> 0 318.14/291.50 half(s(0)) -> 0 318.14/291.50 half(s(s(x))) -> s(half(x)) 318.14/291.50 inc(0) -> 0 318.14/291.50 inc(s(x)) -> s(inc(x)) 318.14/291.50 zero(0) -> true 318.14/291.50 zero(s(x)) -> false 318.14/291.50 p(0) -> 0 318.14/291.50 p(s(x)) -> x 318.14/291.50 bits(x) -> bitIter(x, 0) 318.14/291.50 bitIter(x, y) -> if(zero(x), x, inc(y)) 318.14/291.50 if(true, x, y) -> p(y) 318.14/291.50 if(false, x, y) -> bitIter(half(x), y) 318.14/291.50 318.14/291.50 S is empty. 318.14/291.50 Rewrite Strategy: FULL 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (3) DecreasingLoopProof (LOWER BOUND(ID)) 318.14/291.50 The following loop(s) give(s) rise to the lower bound Omega(n^1): 318.14/291.50 318.14/291.50 The rewrite sequence 318.14/291.50 318.14/291.50 half(s(s(x))) ->^+ s(half(x)) 318.14/291.50 318.14/291.50 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 318.14/291.50 318.14/291.50 The pumping substitution is [x / s(s(x))]. 318.14/291.50 318.14/291.50 The result substitution is [ ]. 318.14/291.50 318.14/291.50 318.14/291.50 318.14/291.50 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (4) 318.14/291.50 Complex Obligation (BEST) 318.14/291.50 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (5) 318.14/291.50 Obligation: 318.14/291.50 Proved the lower bound n^1 for the following obligation: 318.14/291.50 318.14/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 318.14/291.50 318.14/291.50 318.14/291.50 The TRS R consists of the following rules: 318.14/291.50 318.14/291.50 half(0) -> 0 318.14/291.50 half(s(0)) -> 0 318.14/291.50 half(s(s(x))) -> s(half(x)) 318.14/291.50 inc(0) -> 0 318.14/291.50 inc(s(x)) -> s(inc(x)) 318.14/291.50 zero(0) -> true 318.14/291.50 zero(s(x)) -> false 318.14/291.50 p(0) -> 0 318.14/291.50 p(s(x)) -> x 318.14/291.50 bits(x) -> bitIter(x, 0) 318.14/291.50 bitIter(x, y) -> if(zero(x), x, inc(y)) 318.14/291.50 if(true, x, y) -> p(y) 318.14/291.50 if(false, x, y) -> bitIter(half(x), y) 318.14/291.50 318.14/291.50 S is empty. 318.14/291.50 Rewrite Strategy: FULL 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (6) LowerBoundPropagationProof (FINISHED) 318.14/291.50 Propagated lower bound. 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (7) 318.14/291.50 BOUNDS(n^1, INF) 318.14/291.50 318.14/291.50 ---------------------------------------- 318.14/291.50 318.14/291.50 (8) 318.14/291.50 Obligation: 318.14/291.50 Analyzing the following TRS for decreasing loops: 318.14/291.50 318.14/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 318.14/291.50 318.14/291.50 318.14/291.50 The TRS R consists of the following rules: 318.14/291.50 318.14/291.50 half(0) -> 0 318.14/291.50 half(s(0)) -> 0 318.14/291.50 half(s(s(x))) -> s(half(x)) 318.14/291.50 inc(0) -> 0 318.14/291.50 inc(s(x)) -> s(inc(x)) 318.14/291.50 zero(0) -> true 318.14/291.50 zero(s(x)) -> false 318.14/291.50 p(0) -> 0 318.14/291.50 p(s(x)) -> x 318.14/291.50 bits(x) -> bitIter(x, 0) 318.14/291.50 bitIter(x, y) -> if(zero(x), x, inc(y)) 318.14/291.50 if(true, x, y) -> p(y) 318.14/291.50 if(false, x, y) -> bitIter(half(x), y) 318.14/291.50 318.14/291.50 S is empty. 318.14/291.50 Rewrite Strategy: FULL 318.25/291.52 EOF