314.31/291.51 WORST_CASE(Omega(n^1), ?) 314.31/291.52 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 314.31/291.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 314.31/291.52 314.31/291.52 314.31/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 314.31/291.52 314.31/291.52 (0) CpxTRS 314.31/291.52 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 314.31/291.52 (2) CpxTRS 314.31/291.52 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 314.31/291.52 (4) typed CpxTrs 314.31/291.52 (5) OrderProof [LOWER BOUND(ID), 0 ms] 314.31/291.52 (6) typed CpxTrs 314.31/291.52 (7) RewriteLemmaProof [LOWER BOUND(ID), 308 ms] 314.31/291.52 (8) BEST 314.31/291.52 (9) proven lower bound 314.31/291.52 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 314.31/291.52 (11) BOUNDS(n^1, INF) 314.31/291.52 (12) typed CpxTrs 314.31/291.52 (13) RewriteLemmaProof [LOWER BOUND(ID), 58 ms] 314.31/291.52 (14) typed CpxTrs 314.31/291.52 (15) RewriteLemmaProof [LOWER BOUND(ID), 157 ms] 314.31/291.52 (16) typed CpxTrs 314.31/291.52 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (0) 314.31/291.52 Obligation: 314.31/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 314.31/291.52 314.31/291.52 314.31/291.52 The TRS R consists of the following rules: 314.31/291.52 314.31/291.52 min(x, 0) -> 0 314.31/291.52 min(0, y) -> 0 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0) -> x 314.31/291.52 max(0, y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0) -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 S is empty. 314.31/291.52 Rewrite Strategy: FULL 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 314.31/291.52 Renamed function symbols to avoid clashes with predefined symbol. 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (2) 314.31/291.52 Obligation: 314.31/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 314.31/291.52 314.31/291.52 314.31/291.52 The TRS R consists of the following rules: 314.31/291.52 314.31/291.52 min(x, 0') -> 0' 314.31/291.52 min(0', y) -> 0' 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0') -> x 314.31/291.52 max(0', y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0') -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 S is empty. 314.31/291.52 Rewrite Strategy: FULL 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 314.31/291.52 Infered types. 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (4) 314.31/291.52 Obligation: 314.31/291.52 TRS: 314.31/291.52 Rules: 314.31/291.52 min(x, 0') -> 0' 314.31/291.52 min(0', y) -> 0' 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0') -> x 314.31/291.52 max(0', y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0') -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 Types: 314.31/291.52 min :: 0':s -> 0':s -> 0':s 314.31/291.52 0' :: 0':s 314.31/291.52 s :: 0':s -> 0':s 314.31/291.52 max :: 0':s -> 0':s -> 0':s 314.31/291.52 minus :: 0':s -> 0':s -> 0':s 314.31/291.52 any :: 0':s -> 0':s 314.31/291.52 gcd :: 0':s -> 0':s -> gcd 314.31/291.52 hole_0':s1_0 :: 0':s 314.31/291.52 hole_gcd2_0 :: gcd 314.31/291.52 gen_0':s3_0 :: Nat -> 0':s 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (5) OrderProof (LOWER BOUND(ID)) 314.31/291.52 Heuristically decided to analyse the following defined symbols: 314.31/291.52 min, max, minus, any, gcd 314.31/291.52 314.31/291.52 They will be analysed ascendingly in the following order: 314.31/291.52 min < gcd 314.31/291.52 max < gcd 314.31/291.52 any < minus 314.31/291.52 minus < gcd 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (6) 314.31/291.52 Obligation: 314.31/291.52 TRS: 314.31/291.52 Rules: 314.31/291.52 min(x, 0') -> 0' 314.31/291.52 min(0', y) -> 0' 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0') -> x 314.31/291.52 max(0', y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0') -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 Types: 314.31/291.52 min :: 0':s -> 0':s -> 0':s 314.31/291.52 0' :: 0':s 314.31/291.52 s :: 0':s -> 0':s 314.31/291.52 max :: 0':s -> 0':s -> 0':s 314.31/291.52 minus :: 0':s -> 0':s -> 0':s 314.31/291.52 any :: 0':s -> 0':s 314.31/291.52 gcd :: 0':s -> 0':s -> gcd 314.31/291.52 hole_0':s1_0 :: 0':s 314.31/291.52 hole_gcd2_0 :: gcd 314.31/291.52 gen_0':s3_0 :: Nat -> 0':s 314.31/291.52 314.31/291.52 314.31/291.52 Generator Equations: 314.31/291.52 gen_0':s3_0(0) <=> 0' 314.31/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.31/291.52 314.31/291.52 314.31/291.52 The following defined symbols remain to be analysed: 314.31/291.52 min, max, minus, any, gcd 314.31/291.52 314.31/291.52 They will be analysed ascendingly in the following order: 314.31/291.52 min < gcd 314.31/291.52 max < gcd 314.31/291.52 any < minus 314.31/291.52 minus < gcd 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (7) RewriteLemmaProof (LOWER BOUND(ID)) 314.31/291.52 Proved the following rewrite lemma: 314.31/291.52 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 314.31/291.52 314.31/291.52 Induction Base: 314.31/291.52 min(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 314.31/291.52 0' 314.31/291.52 314.31/291.52 Induction Step: 314.31/291.52 min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 314.31/291.52 s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) ->_IH 314.31/291.52 s(gen_0':s3_0(c6_0)) 314.31/291.52 314.31/291.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (8) 314.31/291.52 Complex Obligation (BEST) 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (9) 314.31/291.52 Obligation: 314.31/291.52 Proved the lower bound n^1 for the following obligation: 314.31/291.52 314.31/291.52 TRS: 314.31/291.52 Rules: 314.31/291.52 min(x, 0') -> 0' 314.31/291.52 min(0', y) -> 0' 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0') -> x 314.31/291.52 max(0', y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0') -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 Types: 314.31/291.52 min :: 0':s -> 0':s -> 0':s 314.31/291.52 0' :: 0':s 314.31/291.52 s :: 0':s -> 0':s 314.31/291.52 max :: 0':s -> 0':s -> 0':s 314.31/291.52 minus :: 0':s -> 0':s -> 0':s 314.31/291.52 any :: 0':s -> 0':s 314.31/291.52 gcd :: 0':s -> 0':s -> gcd 314.31/291.52 hole_0':s1_0 :: 0':s 314.31/291.52 hole_gcd2_0 :: gcd 314.31/291.52 gen_0':s3_0 :: Nat -> 0':s 314.31/291.52 314.31/291.52 314.31/291.52 Generator Equations: 314.31/291.52 gen_0':s3_0(0) <=> 0' 314.31/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.31/291.52 314.31/291.52 314.31/291.52 The following defined symbols remain to be analysed: 314.31/291.52 min, max, minus, any, gcd 314.31/291.52 314.31/291.52 They will be analysed ascendingly in the following order: 314.31/291.52 min < gcd 314.31/291.52 max < gcd 314.31/291.52 any < minus 314.31/291.52 minus < gcd 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (10) LowerBoundPropagationProof (FINISHED) 314.31/291.52 Propagated lower bound. 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (11) 314.31/291.52 BOUNDS(n^1, INF) 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (12) 314.31/291.52 Obligation: 314.31/291.52 TRS: 314.31/291.52 Rules: 314.31/291.52 min(x, 0') -> 0' 314.31/291.52 min(0', y) -> 0' 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0') -> x 314.31/291.52 max(0', y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0') -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 Types: 314.31/291.52 min :: 0':s -> 0':s -> 0':s 314.31/291.52 0' :: 0':s 314.31/291.52 s :: 0':s -> 0':s 314.31/291.52 max :: 0':s -> 0':s -> 0':s 314.31/291.52 minus :: 0':s -> 0':s -> 0':s 314.31/291.52 any :: 0':s -> 0':s 314.31/291.52 gcd :: 0':s -> 0':s -> gcd 314.31/291.52 hole_0':s1_0 :: 0':s 314.31/291.52 hole_gcd2_0 :: gcd 314.31/291.52 gen_0':s3_0 :: Nat -> 0':s 314.31/291.52 314.31/291.52 314.31/291.52 Lemmas: 314.31/291.52 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 314.31/291.52 314.31/291.52 314.31/291.52 Generator Equations: 314.31/291.52 gen_0':s3_0(0) <=> 0' 314.31/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.31/291.52 314.31/291.52 314.31/291.52 The following defined symbols remain to be analysed: 314.31/291.52 max, minus, any, gcd 314.31/291.52 314.31/291.52 They will be analysed ascendingly in the following order: 314.31/291.52 max < gcd 314.31/291.52 any < minus 314.31/291.52 minus < gcd 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (13) RewriteLemmaProof (LOWER BOUND(ID)) 314.31/291.52 Proved the following rewrite lemma: 314.31/291.52 max(gen_0':s3_0(n301_0), gen_0':s3_0(n301_0)) -> gen_0':s3_0(n301_0), rt in Omega(1 + n301_0) 314.31/291.52 314.31/291.52 Induction Base: 314.31/291.52 max(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 314.31/291.52 gen_0':s3_0(0) 314.31/291.52 314.31/291.52 Induction Step: 314.31/291.52 max(gen_0':s3_0(+(n301_0, 1)), gen_0':s3_0(+(n301_0, 1))) ->_R^Omega(1) 314.31/291.52 s(max(gen_0':s3_0(n301_0), gen_0':s3_0(n301_0))) ->_IH 314.31/291.52 s(gen_0':s3_0(c302_0)) 314.31/291.52 314.31/291.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (14) 314.31/291.52 Obligation: 314.31/291.52 TRS: 314.31/291.52 Rules: 314.31/291.52 min(x, 0') -> 0' 314.31/291.52 min(0', y) -> 0' 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0') -> x 314.31/291.52 max(0', y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0') -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 Types: 314.31/291.52 min :: 0':s -> 0':s -> 0':s 314.31/291.52 0' :: 0':s 314.31/291.52 s :: 0':s -> 0':s 314.31/291.52 max :: 0':s -> 0':s -> 0':s 314.31/291.52 minus :: 0':s -> 0':s -> 0':s 314.31/291.52 any :: 0':s -> 0':s 314.31/291.52 gcd :: 0':s -> 0':s -> gcd 314.31/291.52 hole_0':s1_0 :: 0':s 314.31/291.52 hole_gcd2_0 :: gcd 314.31/291.52 gen_0':s3_0 :: Nat -> 0':s 314.31/291.52 314.31/291.52 314.31/291.52 Lemmas: 314.31/291.52 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 314.31/291.52 max(gen_0':s3_0(n301_0), gen_0':s3_0(n301_0)) -> gen_0':s3_0(n301_0), rt in Omega(1 + n301_0) 314.31/291.52 314.31/291.52 314.31/291.52 Generator Equations: 314.31/291.52 gen_0':s3_0(0) <=> 0' 314.31/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.31/291.52 314.31/291.52 314.31/291.52 The following defined symbols remain to be analysed: 314.31/291.52 any, minus, gcd 314.31/291.52 314.31/291.52 They will be analysed ascendingly in the following order: 314.31/291.52 any < minus 314.31/291.52 minus < gcd 314.31/291.52 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (15) RewriteLemmaProof (LOWER BOUND(ID)) 314.31/291.52 Proved the following rewrite lemma: 314.31/291.52 any(gen_0':s3_0(+(1, n677_0))) -> *4_0, rt in Omega(n677_0) 314.31/291.52 314.31/291.52 Induction Base: 314.31/291.52 any(gen_0':s3_0(+(1, 0))) 314.31/291.52 314.31/291.52 Induction Step: 314.31/291.52 any(gen_0':s3_0(+(1, +(n677_0, 1)))) ->_R^Omega(1) 314.31/291.52 s(s(any(gen_0':s3_0(+(1, n677_0))))) ->_IH 314.31/291.52 s(s(*4_0)) 314.31/291.52 314.31/291.52 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 314.31/291.52 ---------------------------------------- 314.31/291.52 314.31/291.52 (16) 314.31/291.52 Obligation: 314.31/291.52 TRS: 314.31/291.52 Rules: 314.31/291.52 min(x, 0') -> 0' 314.31/291.52 min(0', y) -> 0' 314.31/291.52 min(s(x), s(y)) -> s(min(x, y)) 314.31/291.52 max(x, 0') -> x 314.31/291.52 max(0', y) -> y 314.31/291.52 max(s(x), s(y)) -> s(max(x, y)) 314.31/291.52 minus(x, 0') -> x 314.31/291.52 minus(s(x), s(y)) -> s(minus(x, any(y))) 314.31/291.52 gcd(s(x), s(y)) -> gcd(minus(max(x, y), min(x, y)), s(min(x, y))) 314.31/291.52 any(s(x)) -> s(s(any(x))) 314.31/291.52 any(x) -> x 314.31/291.52 314.31/291.52 Types: 314.31/291.52 min :: 0':s -> 0':s -> 0':s 314.31/291.52 0' :: 0':s 314.31/291.52 s :: 0':s -> 0':s 314.31/291.52 max :: 0':s -> 0':s -> 0':s 314.31/291.52 minus :: 0':s -> 0':s -> 0':s 314.31/291.52 any :: 0':s -> 0':s 314.31/291.52 gcd :: 0':s -> 0':s -> gcd 314.31/291.52 hole_0':s1_0 :: 0':s 314.31/291.52 hole_gcd2_0 :: gcd 314.31/291.52 gen_0':s3_0 :: Nat -> 0':s 314.31/291.52 314.31/291.52 314.31/291.52 Lemmas: 314.31/291.52 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 314.31/291.52 max(gen_0':s3_0(n301_0), gen_0':s3_0(n301_0)) -> gen_0':s3_0(n301_0), rt in Omega(1 + n301_0) 314.31/291.52 any(gen_0':s3_0(+(1, n677_0))) -> *4_0, rt in Omega(n677_0) 314.31/291.52 314.31/291.52 314.31/291.52 Generator Equations: 314.31/291.52 gen_0':s3_0(0) <=> 0' 314.31/291.52 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.31/291.52 314.31/291.52 314.31/291.52 The following defined symbols remain to be analysed: 314.31/291.52 minus, gcd 314.31/291.52 314.31/291.52 They will be analysed ascendingly in the following order: 314.31/291.52 minus < gcd 314.42/291.55 EOF