305.94/291.56 WORST_CASE(Omega(n^1), ?) 305.94/291.57 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 305.94/291.57 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 305.94/291.57 305.94/291.57 305.94/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 305.94/291.57 305.94/291.57 (0) CpxTRS 305.94/291.57 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 305.94/291.57 (2) TRS for Loop Detection 305.94/291.57 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 305.94/291.57 (4) BEST 305.94/291.57 (5) proven lower bound 305.94/291.57 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 305.94/291.57 (7) BOUNDS(n^1, INF) 305.94/291.57 (8) TRS for Loop Detection 305.94/291.57 305.94/291.57 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (0) 305.94/291.57 Obligation: 305.94/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 305.94/291.57 305.94/291.57 305.94/291.57 The TRS R consists of the following rules: 305.94/291.57 305.94/291.57 half(0) -> 0 305.94/291.57 half(s(0)) -> 0 305.94/291.57 half(s(s(x))) -> s(half(x)) 305.94/291.57 le(0, y) -> true 305.94/291.57 le(s(x), 0) -> false 305.94/291.57 le(s(x), s(y)) -> le(x, y) 305.94/291.57 inc(0) -> 0 305.94/291.57 inc(s(x)) -> s(inc(x)) 305.94/291.57 log(x) -> log2(x, 0) 305.94/291.57 log2(x, y) -> if(le(x, s(0)), x, inc(y)) 305.94/291.57 if(true, x, s(y)) -> y 305.94/291.57 if(false, x, y) -> log2(half(x), y) 305.94/291.57 305.94/291.57 S is empty. 305.94/291.57 Rewrite Strategy: FULL 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 305.94/291.57 Transformed a relative TRS into a decreasing-loop problem. 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (2) 305.94/291.57 Obligation: 305.94/291.57 Analyzing the following TRS for decreasing loops: 305.94/291.57 305.94/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 305.94/291.57 305.94/291.57 305.94/291.57 The TRS R consists of the following rules: 305.94/291.57 305.94/291.57 half(0) -> 0 305.94/291.57 half(s(0)) -> 0 305.94/291.57 half(s(s(x))) -> s(half(x)) 305.94/291.57 le(0, y) -> true 305.94/291.57 le(s(x), 0) -> false 305.94/291.57 le(s(x), s(y)) -> le(x, y) 305.94/291.57 inc(0) -> 0 305.94/291.57 inc(s(x)) -> s(inc(x)) 305.94/291.57 log(x) -> log2(x, 0) 305.94/291.57 log2(x, y) -> if(le(x, s(0)), x, inc(y)) 305.94/291.57 if(true, x, s(y)) -> y 305.94/291.57 if(false, x, y) -> log2(half(x), y) 305.94/291.57 305.94/291.57 S is empty. 305.94/291.57 Rewrite Strategy: FULL 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (3) DecreasingLoopProof (LOWER BOUND(ID)) 305.94/291.57 The following loop(s) give(s) rise to the lower bound Omega(n^1): 305.94/291.57 305.94/291.57 The rewrite sequence 305.94/291.57 305.94/291.57 half(s(s(x))) ->^+ s(half(x)) 305.94/291.57 305.94/291.57 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 305.94/291.57 305.94/291.57 The pumping substitution is [x / s(s(x))]. 305.94/291.57 305.94/291.57 The result substitution is [ ]. 305.94/291.57 305.94/291.57 305.94/291.57 305.94/291.57 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (4) 305.94/291.57 Complex Obligation (BEST) 305.94/291.57 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (5) 305.94/291.57 Obligation: 305.94/291.57 Proved the lower bound n^1 for the following obligation: 305.94/291.57 305.94/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 305.94/291.57 305.94/291.57 305.94/291.57 The TRS R consists of the following rules: 305.94/291.57 305.94/291.57 half(0) -> 0 305.94/291.57 half(s(0)) -> 0 305.94/291.57 half(s(s(x))) -> s(half(x)) 305.94/291.57 le(0, y) -> true 305.94/291.57 le(s(x), 0) -> false 305.94/291.57 le(s(x), s(y)) -> le(x, y) 305.94/291.57 inc(0) -> 0 305.94/291.57 inc(s(x)) -> s(inc(x)) 305.94/291.57 log(x) -> log2(x, 0) 305.94/291.57 log2(x, y) -> if(le(x, s(0)), x, inc(y)) 305.94/291.57 if(true, x, s(y)) -> y 305.94/291.57 if(false, x, y) -> log2(half(x), y) 305.94/291.57 305.94/291.57 S is empty. 305.94/291.57 Rewrite Strategy: FULL 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (6) LowerBoundPropagationProof (FINISHED) 305.94/291.57 Propagated lower bound. 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (7) 305.94/291.57 BOUNDS(n^1, INF) 305.94/291.57 305.94/291.57 ---------------------------------------- 305.94/291.57 305.94/291.57 (8) 305.94/291.57 Obligation: 305.94/291.57 Analyzing the following TRS for decreasing loops: 305.94/291.57 305.94/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 305.94/291.57 305.94/291.57 305.94/291.57 The TRS R consists of the following rules: 305.94/291.57 305.94/291.57 half(0) -> 0 305.94/291.57 half(s(0)) -> 0 305.94/291.57 half(s(s(x))) -> s(half(x)) 305.94/291.57 le(0, y) -> true 305.94/291.57 le(s(x), 0) -> false 305.94/291.57 le(s(x), s(y)) -> le(x, y) 305.94/291.57 inc(0) -> 0 305.94/291.57 inc(s(x)) -> s(inc(x)) 305.94/291.57 log(x) -> log2(x, 0) 305.94/291.57 log2(x, y) -> if(le(x, s(0)), x, inc(y)) 305.94/291.57 if(true, x, s(y)) -> y 305.94/291.57 if(false, x, y) -> log2(half(x), y) 305.94/291.57 305.94/291.57 S is empty. 305.94/291.57 Rewrite Strategy: FULL 305.94/291.60 EOF