1087.22/291.50 WORST_CASE(Omega(n^1), ?) 1087.42/291.55 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 1087.42/291.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1087.42/291.55 1087.42/291.55 1087.42/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1087.42/291.55 1087.42/291.55 (0) CpxTRS 1087.42/291.55 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 1087.42/291.55 (2) CpxTRS 1087.42/291.55 (3) SlicingProof [LOWER BOUND(ID), 0 ms] 1087.42/291.55 (4) CpxTRS 1087.42/291.55 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 1087.42/291.55 (6) typed CpxTrs 1087.42/291.55 (7) OrderProof [LOWER BOUND(ID), 0 ms] 1087.42/291.55 (8) typed CpxTrs 1087.42/291.55 (9) RewriteLemmaProof [LOWER BOUND(ID), 270 ms] 1087.42/291.55 (10) BEST 1087.42/291.55 (11) proven lower bound 1087.42/291.55 (12) LowerBoundPropagationProof [FINISHED, 0 ms] 1087.42/291.55 (13) BOUNDS(n^1, INF) 1087.42/291.55 (14) typed CpxTrs 1087.42/291.55 (15) RewriteLemmaProof [LOWER BOUND(ID), 392 ms] 1087.42/291.55 (16) BOUNDS(1, INF) 1087.42/291.55 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (0) 1087.42/291.55 Obligation: 1087.42/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1087.42/291.55 1087.42/291.55 1087.42/291.55 The TRS R consists of the following rules: 1087.42/291.55 1087.42/291.55 numbers -> d(0) 1087.42/291.55 d(x) -> if(le(x, nr), x) 1087.42/291.55 if(true, x) -> cons(x, d(s(x))) 1087.42/291.55 if(false, x) -> nil 1087.42/291.55 le(0, y) -> true 1087.42/291.55 le(s(x), 0) -> false 1087.42/291.55 le(s(x), s(y)) -> le(x, y) 1087.42/291.55 nr -> ack(s(s(s(s(s(s(0)))))), 0) 1087.42/291.55 ack(0, x) -> s(x) 1087.42/291.55 ack(s(x), 0) -> ack(x, s(0)) 1087.42/291.55 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1087.42/291.55 1087.42/291.55 S is empty. 1087.42/291.55 Rewrite Strategy: FULL 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 1087.42/291.55 Renamed function symbols to avoid clashes with predefined symbol. 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (2) 1087.42/291.55 Obligation: 1087.42/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1087.42/291.55 1087.42/291.55 1087.42/291.55 The TRS R consists of the following rules: 1087.42/291.55 1087.42/291.55 numbers -> d(0') 1087.42/291.55 d(x) -> if(le(x, nr), x) 1087.42/291.55 if(true, x) -> cons(x, d(s(x))) 1087.42/291.55 if(false, x) -> nil 1087.42/291.55 le(0', y) -> true 1087.42/291.55 le(s(x), 0') -> false 1087.42/291.55 le(s(x), s(y)) -> le(x, y) 1087.42/291.55 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1087.42/291.55 ack(0', x) -> s(x) 1087.42/291.55 ack(s(x), 0') -> ack(x, s(0')) 1087.42/291.55 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1087.42/291.55 1087.42/291.55 S is empty. 1087.42/291.55 Rewrite Strategy: FULL 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (3) SlicingProof (LOWER BOUND(ID)) 1087.42/291.55 Sliced the following arguments: 1087.42/291.55 cons/0 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (4) 1087.42/291.55 Obligation: 1087.42/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1087.42/291.55 1087.42/291.55 1087.42/291.55 The TRS R consists of the following rules: 1087.42/291.55 1087.42/291.55 numbers -> d(0') 1087.42/291.55 d(x) -> if(le(x, nr), x) 1087.42/291.55 if(true, x) -> cons(d(s(x))) 1087.42/291.55 if(false, x) -> nil 1087.42/291.55 le(0', y) -> true 1087.42/291.55 le(s(x), 0') -> false 1087.42/291.55 le(s(x), s(y)) -> le(x, y) 1087.42/291.55 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1087.42/291.55 ack(0', x) -> s(x) 1087.42/291.55 ack(s(x), 0') -> ack(x, s(0')) 1087.42/291.55 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1087.42/291.55 1087.42/291.55 S is empty. 1087.42/291.55 Rewrite Strategy: FULL 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 1087.42/291.55 Infered types. 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (6) 1087.42/291.55 Obligation: 1087.42/291.55 TRS: 1087.42/291.55 Rules: 1087.42/291.55 numbers -> d(0') 1087.42/291.55 d(x) -> if(le(x, nr), x) 1087.42/291.55 if(true, x) -> cons(d(s(x))) 1087.42/291.55 if(false, x) -> nil 1087.42/291.55 le(0', y) -> true 1087.42/291.55 le(s(x), 0') -> false 1087.42/291.55 le(s(x), s(y)) -> le(x, y) 1087.42/291.55 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1087.42/291.55 ack(0', x) -> s(x) 1087.42/291.55 ack(s(x), 0') -> ack(x, s(0')) 1087.42/291.55 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1087.42/291.55 1087.42/291.55 Types: 1087.42/291.55 numbers :: cons:nil 1087.42/291.55 d :: 0':s -> cons:nil 1087.42/291.55 0' :: 0':s 1087.42/291.55 if :: true:false -> 0':s -> cons:nil 1087.42/291.55 le :: 0':s -> 0':s -> true:false 1087.42/291.55 nr :: 0':s 1087.42/291.55 true :: true:false 1087.42/291.55 cons :: cons:nil -> cons:nil 1087.42/291.55 s :: 0':s -> 0':s 1087.42/291.55 false :: true:false 1087.42/291.55 nil :: cons:nil 1087.42/291.55 ack :: 0':s -> 0':s -> 0':s 1087.42/291.55 hole_cons:nil1_0 :: cons:nil 1087.42/291.55 hole_0':s2_0 :: 0':s 1087.42/291.55 hole_true:false3_0 :: true:false 1087.42/291.55 gen_cons:nil4_0 :: Nat -> cons:nil 1087.42/291.55 gen_0':s5_0 :: Nat -> 0':s 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (7) OrderProof (LOWER BOUND(ID)) 1087.42/291.55 Heuristically decided to analyse the following defined symbols: 1087.42/291.55 d, le, ack 1087.42/291.55 1087.42/291.55 They will be analysed ascendingly in the following order: 1087.42/291.55 le < d 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (8) 1087.42/291.55 Obligation: 1087.42/291.55 TRS: 1087.42/291.55 Rules: 1087.42/291.55 numbers -> d(0') 1087.42/291.55 d(x) -> if(le(x, nr), x) 1087.42/291.55 if(true, x) -> cons(d(s(x))) 1087.42/291.55 if(false, x) -> nil 1087.42/291.55 le(0', y) -> true 1087.42/291.55 le(s(x), 0') -> false 1087.42/291.55 le(s(x), s(y)) -> le(x, y) 1087.42/291.55 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1087.42/291.55 ack(0', x) -> s(x) 1087.42/291.55 ack(s(x), 0') -> ack(x, s(0')) 1087.42/291.55 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1087.42/291.55 1087.42/291.55 Types: 1087.42/291.55 numbers :: cons:nil 1087.42/291.55 d :: 0':s -> cons:nil 1087.42/291.55 0' :: 0':s 1087.42/291.55 if :: true:false -> 0':s -> cons:nil 1087.42/291.55 le :: 0':s -> 0':s -> true:false 1087.42/291.55 nr :: 0':s 1087.42/291.55 true :: true:false 1087.42/291.55 cons :: cons:nil -> cons:nil 1087.42/291.55 s :: 0':s -> 0':s 1087.42/291.55 false :: true:false 1087.42/291.55 nil :: cons:nil 1087.42/291.55 ack :: 0':s -> 0':s -> 0':s 1087.42/291.55 hole_cons:nil1_0 :: cons:nil 1087.42/291.55 hole_0':s2_0 :: 0':s 1087.42/291.55 hole_true:false3_0 :: true:false 1087.42/291.55 gen_cons:nil4_0 :: Nat -> cons:nil 1087.42/291.55 gen_0':s5_0 :: Nat -> 0':s 1087.42/291.55 1087.42/291.55 1087.42/291.55 Generator Equations: 1087.42/291.55 gen_cons:nil4_0(0) <=> nil 1087.42/291.55 gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) 1087.42/291.55 gen_0':s5_0(0) <=> 0' 1087.42/291.55 gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) 1087.42/291.55 1087.42/291.55 1087.42/291.55 The following defined symbols remain to be analysed: 1087.42/291.55 le, d, ack 1087.42/291.55 1087.42/291.55 They will be analysed ascendingly in the following order: 1087.42/291.55 le < d 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (9) RewriteLemmaProof (LOWER BOUND(ID)) 1087.42/291.55 Proved the following rewrite lemma: 1087.42/291.55 le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) -> true, rt in Omega(1 + n7_0) 1087.42/291.55 1087.42/291.55 Induction Base: 1087.42/291.55 le(gen_0':s5_0(0), gen_0':s5_0(0)) ->_R^Omega(1) 1087.42/291.55 true 1087.42/291.55 1087.42/291.55 Induction Step: 1087.42/291.55 le(gen_0':s5_0(+(n7_0, 1)), gen_0':s5_0(+(n7_0, 1))) ->_R^Omega(1) 1087.42/291.55 le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) ->_IH 1087.42/291.55 true 1087.42/291.55 1087.42/291.55 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (10) 1087.42/291.55 Complex Obligation (BEST) 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (11) 1087.42/291.55 Obligation: 1087.42/291.55 Proved the lower bound n^1 for the following obligation: 1087.42/291.55 1087.42/291.55 TRS: 1087.42/291.55 Rules: 1087.42/291.55 numbers -> d(0') 1087.42/291.55 d(x) -> if(le(x, nr), x) 1087.42/291.55 if(true, x) -> cons(d(s(x))) 1087.42/291.55 if(false, x) -> nil 1087.42/291.55 le(0', y) -> true 1087.42/291.55 le(s(x), 0') -> false 1087.42/291.55 le(s(x), s(y)) -> le(x, y) 1087.42/291.55 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1087.42/291.55 ack(0', x) -> s(x) 1087.42/291.55 ack(s(x), 0') -> ack(x, s(0')) 1087.42/291.55 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1087.42/291.55 1087.42/291.55 Types: 1087.42/291.55 numbers :: cons:nil 1087.42/291.55 d :: 0':s -> cons:nil 1087.42/291.55 0' :: 0':s 1087.42/291.55 if :: true:false -> 0':s -> cons:nil 1087.42/291.55 le :: 0':s -> 0':s -> true:false 1087.42/291.55 nr :: 0':s 1087.42/291.55 true :: true:false 1087.42/291.55 cons :: cons:nil -> cons:nil 1087.42/291.55 s :: 0':s -> 0':s 1087.42/291.55 false :: true:false 1087.42/291.55 nil :: cons:nil 1087.42/291.55 ack :: 0':s -> 0':s -> 0':s 1087.42/291.55 hole_cons:nil1_0 :: cons:nil 1087.42/291.55 hole_0':s2_0 :: 0':s 1087.42/291.55 hole_true:false3_0 :: true:false 1087.42/291.55 gen_cons:nil4_0 :: Nat -> cons:nil 1087.42/291.55 gen_0':s5_0 :: Nat -> 0':s 1087.42/291.55 1087.42/291.55 1087.42/291.55 Generator Equations: 1087.42/291.55 gen_cons:nil4_0(0) <=> nil 1087.42/291.55 gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) 1087.42/291.55 gen_0':s5_0(0) <=> 0' 1087.42/291.55 gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) 1087.42/291.55 1087.42/291.55 1087.42/291.55 The following defined symbols remain to be analysed: 1087.42/291.55 le, d, ack 1087.42/291.55 1087.42/291.55 They will be analysed ascendingly in the following order: 1087.42/291.55 le < d 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (12) LowerBoundPropagationProof (FINISHED) 1087.42/291.55 Propagated lower bound. 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (13) 1087.42/291.55 BOUNDS(n^1, INF) 1087.42/291.55 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (14) 1087.42/291.55 Obligation: 1087.42/291.55 TRS: 1087.42/291.55 Rules: 1087.42/291.55 numbers -> d(0') 1087.42/291.55 d(x) -> if(le(x, nr), x) 1087.42/291.55 if(true, x) -> cons(d(s(x))) 1087.42/291.55 if(false, x) -> nil 1087.42/291.55 le(0', y) -> true 1087.42/291.55 le(s(x), 0') -> false 1087.42/291.55 le(s(x), s(y)) -> le(x, y) 1087.42/291.55 nr -> ack(s(s(s(s(s(s(0')))))), 0') 1087.42/291.55 ack(0', x) -> s(x) 1087.42/291.55 ack(s(x), 0') -> ack(x, s(0')) 1087.42/291.55 ack(s(x), s(y)) -> ack(x, ack(s(x), y)) 1087.42/291.55 1087.42/291.55 Types: 1087.42/291.55 numbers :: cons:nil 1087.42/291.55 d :: 0':s -> cons:nil 1087.42/291.55 0' :: 0':s 1087.42/291.55 if :: true:false -> 0':s -> cons:nil 1087.42/291.55 le :: 0':s -> 0':s -> true:false 1087.42/291.55 nr :: 0':s 1087.42/291.55 true :: true:false 1087.42/291.55 cons :: cons:nil -> cons:nil 1087.42/291.55 s :: 0':s -> 0':s 1087.42/291.55 false :: true:false 1087.42/291.55 nil :: cons:nil 1087.42/291.55 ack :: 0':s -> 0':s -> 0':s 1087.42/291.55 hole_cons:nil1_0 :: cons:nil 1087.42/291.55 hole_0':s2_0 :: 0':s 1087.42/291.55 hole_true:false3_0 :: true:false 1087.42/291.55 gen_cons:nil4_0 :: Nat -> cons:nil 1087.42/291.55 gen_0':s5_0 :: Nat -> 0':s 1087.42/291.55 1087.42/291.55 1087.42/291.55 Lemmas: 1087.42/291.55 le(gen_0':s5_0(n7_0), gen_0':s5_0(n7_0)) -> true, rt in Omega(1 + n7_0) 1087.42/291.55 1087.42/291.55 1087.42/291.55 Generator Equations: 1087.42/291.55 gen_cons:nil4_0(0) <=> nil 1087.42/291.55 gen_cons:nil4_0(+(x, 1)) <=> cons(gen_cons:nil4_0(x)) 1087.42/291.55 gen_0':s5_0(0) <=> 0' 1087.42/291.55 gen_0':s5_0(+(x, 1)) <=> s(gen_0':s5_0(x)) 1087.42/291.55 1087.42/291.55 1087.42/291.55 The following defined symbols remain to be analysed: 1087.42/291.55 d, ack 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (15) RewriteLemmaProof (LOWER BOUND(ID)) 1087.42/291.55 Proved the following rewrite lemma: 1087.42/291.55 ack(gen_0':s5_0(1), gen_0':s5_0(+(1, n910_0))) -> *6_0, rt in Omega(n910_0) 1087.42/291.55 1087.42/291.55 Induction Base: 1087.42/291.55 ack(gen_0':s5_0(1), gen_0':s5_0(+(1, 0))) 1087.42/291.55 1087.42/291.55 Induction Step: 1087.42/291.55 ack(gen_0':s5_0(1), gen_0':s5_0(+(1, +(n910_0, 1)))) ->_R^Omega(1) 1087.42/291.55 ack(gen_0':s5_0(0), ack(s(gen_0':s5_0(0)), gen_0':s5_0(+(1, n910_0)))) ->_IH 1087.42/291.55 ack(gen_0':s5_0(0), *6_0) 1087.42/291.55 1087.42/291.55 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 1087.42/291.55 ---------------------------------------- 1087.42/291.55 1087.42/291.55 (16) 1087.42/291.55 BOUNDS(1, INF) 1087.60/291.65 EOF