308.55/291.61 WORST_CASE(Omega(n^1), ?) 308.55/291.62 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 308.55/291.62 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 308.55/291.62 308.55/291.62 308.55/291.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.55/291.62 308.55/291.62 (0) CpxTRS 308.55/291.62 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 308.55/291.62 (2) TRS for Loop Detection 308.55/291.62 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 308.55/291.62 (4) BEST 308.55/291.62 (5) proven lower bound 308.55/291.62 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 308.55/291.62 (7) BOUNDS(n^1, INF) 308.55/291.62 (8) TRS for Loop Detection 308.55/291.62 308.55/291.62 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (0) 308.55/291.62 Obligation: 308.55/291.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.55/291.62 308.55/291.62 308.55/291.62 The TRS R consists of the following rules: 308.55/291.62 308.55/291.62 eq(0, 0) -> true 308.55/291.62 eq(0, s(x)) -> false 308.55/291.62 eq(s(x), 0) -> false 308.55/291.62 eq(s(x), s(y)) -> eq(x, y) 308.55/291.62 le(0, y) -> true 308.55/291.62 le(s(x), 0) -> false 308.55/291.62 le(s(x), s(y)) -> le(x, y) 308.55/291.62 app(nil, y) -> y 308.55/291.62 app(add(n, x), y) -> add(n, app(x, y)) 308.55/291.62 min(add(n, nil)) -> n 308.55/291.62 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.55/291.62 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.55/291.62 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.55/291.62 head(add(n, x)) -> n 308.55/291.62 tail(add(n, x)) -> x 308.55/291.62 tail(nil) -> nil 308.55/291.62 null(nil) -> true 308.55/291.62 null(add(n, x)) -> false 308.55/291.62 rm(n, nil) -> nil 308.55/291.62 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.55/291.62 if_rm(true, n, add(m, x)) -> rm(n, x) 308.55/291.62 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.55/291.62 minsort(x) -> mins(x, nil, nil) 308.55/291.62 mins(x, y, z) -> if(null(x), x, y, z) 308.55/291.62 if(true, x, y, z) -> z 308.55/291.62 if(false, x, y, z) -> if2(eq(head(x), min(x)), x, y, z) 308.55/291.62 if2(true, x, y, z) -> mins(app(rm(head(x), tail(x)), y), nil, app(z, add(head(x), nil))) 308.55/291.62 if2(false, x, y, z) -> mins(tail(x), add(head(x), y), z) 308.55/291.62 308.55/291.62 S is empty. 308.55/291.62 Rewrite Strategy: FULL 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 308.55/291.62 Transformed a relative TRS into a decreasing-loop problem. 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (2) 308.55/291.62 Obligation: 308.55/291.62 Analyzing the following TRS for decreasing loops: 308.55/291.62 308.55/291.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.55/291.62 308.55/291.62 308.55/291.62 The TRS R consists of the following rules: 308.55/291.62 308.55/291.62 eq(0, 0) -> true 308.55/291.62 eq(0, s(x)) -> false 308.55/291.62 eq(s(x), 0) -> false 308.55/291.62 eq(s(x), s(y)) -> eq(x, y) 308.55/291.62 le(0, y) -> true 308.55/291.62 le(s(x), 0) -> false 308.55/291.62 le(s(x), s(y)) -> le(x, y) 308.55/291.62 app(nil, y) -> y 308.55/291.62 app(add(n, x), y) -> add(n, app(x, y)) 308.55/291.62 min(add(n, nil)) -> n 308.55/291.62 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.55/291.62 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.55/291.62 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.55/291.62 head(add(n, x)) -> n 308.55/291.62 tail(add(n, x)) -> x 308.55/291.62 tail(nil) -> nil 308.55/291.62 null(nil) -> true 308.55/291.62 null(add(n, x)) -> false 308.55/291.62 rm(n, nil) -> nil 308.55/291.62 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.55/291.62 if_rm(true, n, add(m, x)) -> rm(n, x) 308.55/291.62 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.55/291.62 minsort(x) -> mins(x, nil, nil) 308.55/291.62 mins(x, y, z) -> if(null(x), x, y, z) 308.55/291.62 if(true, x, y, z) -> z 308.55/291.62 if(false, x, y, z) -> if2(eq(head(x), min(x)), x, y, z) 308.55/291.62 if2(true, x, y, z) -> mins(app(rm(head(x), tail(x)), y), nil, app(z, add(head(x), nil))) 308.55/291.62 if2(false, x, y, z) -> mins(tail(x), add(head(x), y), z) 308.55/291.62 308.55/291.62 S is empty. 308.55/291.62 Rewrite Strategy: FULL 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (3) DecreasingLoopProof (LOWER BOUND(ID)) 308.55/291.62 The following loop(s) give(s) rise to the lower bound Omega(n^1): 308.55/291.62 308.55/291.62 The rewrite sequence 308.55/291.62 308.55/291.62 le(s(x), s(y)) ->^+ le(x, y) 308.55/291.62 308.55/291.62 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 308.55/291.62 308.55/291.62 The pumping substitution is [x / s(x), y / s(y)]. 308.55/291.62 308.55/291.62 The result substitution is [ ]. 308.55/291.62 308.55/291.62 308.55/291.62 308.55/291.62 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (4) 308.55/291.62 Complex Obligation (BEST) 308.55/291.62 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (5) 308.55/291.62 Obligation: 308.55/291.62 Proved the lower bound n^1 for the following obligation: 308.55/291.62 308.55/291.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.55/291.62 308.55/291.62 308.55/291.62 The TRS R consists of the following rules: 308.55/291.62 308.55/291.62 eq(0, 0) -> true 308.55/291.62 eq(0, s(x)) -> false 308.55/291.62 eq(s(x), 0) -> false 308.55/291.62 eq(s(x), s(y)) -> eq(x, y) 308.55/291.62 le(0, y) -> true 308.55/291.62 le(s(x), 0) -> false 308.55/291.62 le(s(x), s(y)) -> le(x, y) 308.55/291.62 app(nil, y) -> y 308.55/291.62 app(add(n, x), y) -> add(n, app(x, y)) 308.55/291.62 min(add(n, nil)) -> n 308.55/291.62 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.55/291.62 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.55/291.62 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.55/291.62 head(add(n, x)) -> n 308.55/291.62 tail(add(n, x)) -> x 308.55/291.62 tail(nil) -> nil 308.55/291.62 null(nil) -> true 308.55/291.62 null(add(n, x)) -> false 308.55/291.62 rm(n, nil) -> nil 308.55/291.62 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.55/291.62 if_rm(true, n, add(m, x)) -> rm(n, x) 308.55/291.62 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.55/291.62 minsort(x) -> mins(x, nil, nil) 308.55/291.62 mins(x, y, z) -> if(null(x), x, y, z) 308.55/291.62 if(true, x, y, z) -> z 308.55/291.62 if(false, x, y, z) -> if2(eq(head(x), min(x)), x, y, z) 308.55/291.62 if2(true, x, y, z) -> mins(app(rm(head(x), tail(x)), y), nil, app(z, add(head(x), nil))) 308.55/291.62 if2(false, x, y, z) -> mins(tail(x), add(head(x), y), z) 308.55/291.62 308.55/291.62 S is empty. 308.55/291.62 Rewrite Strategy: FULL 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (6) LowerBoundPropagationProof (FINISHED) 308.55/291.62 Propagated lower bound. 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (7) 308.55/291.62 BOUNDS(n^1, INF) 308.55/291.62 308.55/291.62 ---------------------------------------- 308.55/291.62 308.55/291.62 (8) 308.55/291.62 Obligation: 308.55/291.62 Analyzing the following TRS for decreasing loops: 308.55/291.62 308.55/291.62 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.55/291.62 308.55/291.62 308.55/291.62 The TRS R consists of the following rules: 308.55/291.62 308.55/291.62 eq(0, 0) -> true 308.55/291.62 eq(0, s(x)) -> false 308.55/291.62 eq(s(x), 0) -> false 308.55/291.62 eq(s(x), s(y)) -> eq(x, y) 308.55/291.62 le(0, y) -> true 308.55/291.62 le(s(x), 0) -> false 308.55/291.62 le(s(x), s(y)) -> le(x, y) 308.55/291.62 app(nil, y) -> y 308.55/291.62 app(add(n, x), y) -> add(n, app(x, y)) 308.55/291.62 min(add(n, nil)) -> n 308.55/291.62 min(add(n, add(m, x))) -> if_min(le(n, m), add(n, add(m, x))) 308.55/291.62 if_min(true, add(n, add(m, x))) -> min(add(n, x)) 308.55/291.62 if_min(false, add(n, add(m, x))) -> min(add(m, x)) 308.55/291.62 head(add(n, x)) -> n 308.55/291.62 tail(add(n, x)) -> x 308.55/291.62 tail(nil) -> nil 308.55/291.62 null(nil) -> true 308.55/291.62 null(add(n, x)) -> false 308.55/291.62 rm(n, nil) -> nil 308.55/291.62 rm(n, add(m, x)) -> if_rm(eq(n, m), n, add(m, x)) 308.55/291.62 if_rm(true, n, add(m, x)) -> rm(n, x) 308.55/291.62 if_rm(false, n, add(m, x)) -> add(m, rm(n, x)) 308.55/291.62 minsort(x) -> mins(x, nil, nil) 308.55/291.62 mins(x, y, z) -> if(null(x), x, y, z) 308.55/291.62 if(true, x, y, z) -> z 308.55/291.62 if(false, x, y, z) -> if2(eq(head(x), min(x)), x, y, z) 308.55/291.62 if2(true, x, y, z) -> mins(app(rm(head(x), tail(x)), y), nil, app(z, add(head(x), nil))) 308.55/291.62 if2(false, x, y, z) -> mins(tail(x), add(head(x), y), z) 308.55/291.62 308.55/291.62 S is empty. 308.55/291.62 Rewrite Strategy: FULL 308.58/291.65 EOF