1102.29/291.54 WORST_CASE(Omega(n^1), ?) 1102.29/291.54 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 1102.29/291.54 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1102.29/291.54 1102.29/291.54 1102.29/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1102.29/291.54 1102.29/291.54 (0) CpxTRS 1102.29/291.54 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1102.29/291.54 (2) TRS for Loop Detection 1102.29/291.54 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1102.29/291.54 (4) BEST 1102.29/291.54 (5) proven lower bound 1102.29/291.54 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 1102.29/291.54 (7) BOUNDS(n^1, INF) 1102.29/291.54 (8) TRS for Loop Detection 1102.29/291.54 1102.29/291.54 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (0) 1102.29/291.54 Obligation: 1102.29/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1102.29/291.54 1102.29/291.54 1102.29/291.54 The TRS R consists of the following rules: 1102.29/291.54 1102.29/291.54 tower(x) -> f(a, x, s(0)) 1102.29/291.54 f(a, 0, y) -> y 1102.29/291.54 f(a, s(x), y) -> f(b, y, s(x)) 1102.29/291.54 f(b, y, x) -> f(a, half(x), exp(y)) 1102.29/291.54 exp(0) -> s(0) 1102.29/291.54 exp(s(x)) -> double(exp(x)) 1102.29/291.54 double(0) -> 0 1102.29/291.54 double(s(x)) -> s(s(double(x))) 1102.29/291.54 half(0) -> double(0) 1102.29/291.54 half(s(0)) -> half(0) 1102.29/291.54 half(s(s(x))) -> s(half(x)) 1102.29/291.54 1102.29/291.54 S is empty. 1102.29/291.54 Rewrite Strategy: FULL 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1102.29/291.54 Transformed a relative TRS into a decreasing-loop problem. 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (2) 1102.29/291.54 Obligation: 1102.29/291.54 Analyzing the following TRS for decreasing loops: 1102.29/291.54 1102.29/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1102.29/291.54 1102.29/291.54 1102.29/291.54 The TRS R consists of the following rules: 1102.29/291.54 1102.29/291.54 tower(x) -> f(a, x, s(0)) 1102.29/291.54 f(a, 0, y) -> y 1102.29/291.54 f(a, s(x), y) -> f(b, y, s(x)) 1102.29/291.54 f(b, y, x) -> f(a, half(x), exp(y)) 1102.29/291.54 exp(0) -> s(0) 1102.29/291.54 exp(s(x)) -> double(exp(x)) 1102.29/291.54 double(0) -> 0 1102.29/291.54 double(s(x)) -> s(s(double(x))) 1102.29/291.54 half(0) -> double(0) 1102.29/291.54 half(s(0)) -> half(0) 1102.29/291.54 half(s(s(x))) -> s(half(x)) 1102.29/291.54 1102.29/291.54 S is empty. 1102.29/291.54 Rewrite Strategy: FULL 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (3) DecreasingLoopProof (LOWER BOUND(ID)) 1102.29/291.54 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1102.29/291.54 1102.29/291.54 The rewrite sequence 1102.29/291.54 1102.29/291.54 exp(s(x)) ->^+ double(exp(x)) 1102.29/291.54 1102.29/291.54 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 1102.29/291.54 1102.29/291.54 The pumping substitution is [x / s(x)]. 1102.29/291.54 1102.29/291.54 The result substitution is [ ]. 1102.29/291.54 1102.29/291.54 1102.29/291.54 1102.29/291.54 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (4) 1102.29/291.54 Complex Obligation (BEST) 1102.29/291.54 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (5) 1102.29/291.54 Obligation: 1102.29/291.54 Proved the lower bound n^1 for the following obligation: 1102.29/291.54 1102.29/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1102.29/291.54 1102.29/291.54 1102.29/291.54 The TRS R consists of the following rules: 1102.29/291.54 1102.29/291.54 tower(x) -> f(a, x, s(0)) 1102.29/291.54 f(a, 0, y) -> y 1102.29/291.54 f(a, s(x), y) -> f(b, y, s(x)) 1102.29/291.54 f(b, y, x) -> f(a, half(x), exp(y)) 1102.29/291.54 exp(0) -> s(0) 1102.29/291.54 exp(s(x)) -> double(exp(x)) 1102.29/291.54 double(0) -> 0 1102.29/291.54 double(s(x)) -> s(s(double(x))) 1102.29/291.54 half(0) -> double(0) 1102.29/291.54 half(s(0)) -> half(0) 1102.29/291.54 half(s(s(x))) -> s(half(x)) 1102.29/291.54 1102.29/291.54 S is empty. 1102.29/291.54 Rewrite Strategy: FULL 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (6) LowerBoundPropagationProof (FINISHED) 1102.29/291.54 Propagated lower bound. 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (7) 1102.29/291.54 BOUNDS(n^1, INF) 1102.29/291.54 1102.29/291.54 ---------------------------------------- 1102.29/291.54 1102.29/291.54 (8) 1102.29/291.54 Obligation: 1102.29/291.54 Analyzing the following TRS for decreasing loops: 1102.29/291.54 1102.29/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1102.29/291.54 1102.29/291.54 1102.29/291.54 The TRS R consists of the following rules: 1102.29/291.54 1102.29/291.54 tower(x) -> f(a, x, s(0)) 1102.29/291.54 f(a, 0, y) -> y 1102.29/291.54 f(a, s(x), y) -> f(b, y, s(x)) 1102.29/291.54 f(b, y, x) -> f(a, half(x), exp(y)) 1102.29/291.54 exp(0) -> s(0) 1102.29/291.54 exp(s(x)) -> double(exp(x)) 1102.29/291.54 double(0) -> 0 1102.29/291.54 double(s(x)) -> s(s(double(x))) 1102.29/291.54 half(0) -> double(0) 1102.29/291.54 half(s(0)) -> half(0) 1102.29/291.54 half(s(s(x))) -> s(half(x)) 1102.29/291.54 1102.29/291.54 S is empty. 1102.29/291.54 Rewrite Strategy: FULL 1102.61/291.61 EOF