303.07/291.50 WORST_CASE(Omega(n^1), ?) 303.07/291.51 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 303.07/291.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 303.07/291.51 303.07/291.51 303.07/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.07/291.51 303.07/291.51 (0) CpxTRS 303.07/291.51 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 303.07/291.51 (2) TRS for Loop Detection 303.07/291.51 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 303.07/291.51 (4) BEST 303.07/291.51 (5) proven lower bound 303.07/291.51 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 303.07/291.51 (7) BOUNDS(n^1, INF) 303.07/291.51 (8) TRS for Loop Detection 303.07/291.51 303.07/291.51 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (0) 303.07/291.51 Obligation: 303.07/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.07/291.51 303.07/291.51 303.07/291.51 The TRS R consists of the following rules: 303.07/291.51 303.07/291.51 minus(x, x) -> 0 303.07/291.51 minus(0, x) -> 0 303.07/291.51 minus(x, 0) -> x 303.07/291.51 minus(s(x), s(y)) -> minus(x, y) 303.07/291.51 le(0, y) -> true 303.07/291.51 le(s(x), 0) -> false 303.07/291.51 le(s(x), s(y)) -> le(x, y) 303.07/291.51 quot(x, y) -> if_quot(minus(x, y), y, le(y, 0), le(y, x)) 303.07/291.51 if_quot(x, y, true, z) -> divByZeroError 303.07/291.51 if_quot(x, y, false, true) -> s(quot(x, y)) 303.07/291.51 if_quot(x, y, false, false) -> 0 303.07/291.51 303.07/291.51 S is empty. 303.07/291.51 Rewrite Strategy: FULL 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 303.07/291.51 Transformed a relative TRS into a decreasing-loop problem. 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (2) 303.07/291.51 Obligation: 303.07/291.51 Analyzing the following TRS for decreasing loops: 303.07/291.51 303.07/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.07/291.51 303.07/291.51 303.07/291.51 The TRS R consists of the following rules: 303.07/291.51 303.07/291.51 minus(x, x) -> 0 303.07/291.51 minus(0, x) -> 0 303.07/291.51 minus(x, 0) -> x 303.07/291.51 minus(s(x), s(y)) -> minus(x, y) 303.07/291.51 le(0, y) -> true 303.07/291.51 le(s(x), 0) -> false 303.07/291.51 le(s(x), s(y)) -> le(x, y) 303.07/291.51 quot(x, y) -> if_quot(minus(x, y), y, le(y, 0), le(y, x)) 303.07/291.51 if_quot(x, y, true, z) -> divByZeroError 303.07/291.51 if_quot(x, y, false, true) -> s(quot(x, y)) 303.07/291.51 if_quot(x, y, false, false) -> 0 303.07/291.51 303.07/291.51 S is empty. 303.07/291.51 Rewrite Strategy: FULL 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (3) DecreasingLoopProof (LOWER BOUND(ID)) 303.07/291.51 The following loop(s) give(s) rise to the lower bound Omega(n^1): 303.07/291.51 303.07/291.51 The rewrite sequence 303.07/291.51 303.07/291.51 minus(s(x), s(y)) ->^+ minus(x, y) 303.07/291.51 303.07/291.51 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 303.07/291.51 303.07/291.51 The pumping substitution is [x / s(x), y / s(y)]. 303.07/291.51 303.07/291.51 The result substitution is [ ]. 303.07/291.51 303.07/291.51 303.07/291.51 303.07/291.51 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (4) 303.07/291.51 Complex Obligation (BEST) 303.07/291.51 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (5) 303.07/291.51 Obligation: 303.07/291.51 Proved the lower bound n^1 for the following obligation: 303.07/291.51 303.07/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.07/291.51 303.07/291.51 303.07/291.51 The TRS R consists of the following rules: 303.07/291.51 303.07/291.51 minus(x, x) -> 0 303.07/291.51 minus(0, x) -> 0 303.07/291.51 minus(x, 0) -> x 303.07/291.51 minus(s(x), s(y)) -> minus(x, y) 303.07/291.51 le(0, y) -> true 303.07/291.51 le(s(x), 0) -> false 303.07/291.51 le(s(x), s(y)) -> le(x, y) 303.07/291.51 quot(x, y) -> if_quot(minus(x, y), y, le(y, 0), le(y, x)) 303.07/291.51 if_quot(x, y, true, z) -> divByZeroError 303.07/291.51 if_quot(x, y, false, true) -> s(quot(x, y)) 303.07/291.51 if_quot(x, y, false, false) -> 0 303.07/291.51 303.07/291.51 S is empty. 303.07/291.51 Rewrite Strategy: FULL 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (6) LowerBoundPropagationProof (FINISHED) 303.07/291.51 Propagated lower bound. 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (7) 303.07/291.51 BOUNDS(n^1, INF) 303.07/291.51 303.07/291.51 ---------------------------------------- 303.07/291.51 303.07/291.51 (8) 303.07/291.51 Obligation: 303.07/291.51 Analyzing the following TRS for decreasing loops: 303.07/291.51 303.07/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 303.07/291.51 303.07/291.51 303.07/291.51 The TRS R consists of the following rules: 303.07/291.51 303.07/291.51 minus(x, x) -> 0 303.07/291.51 minus(0, x) -> 0 303.07/291.51 minus(x, 0) -> x 303.07/291.51 minus(s(x), s(y)) -> minus(x, y) 303.07/291.51 le(0, y) -> true 303.07/291.51 le(s(x), 0) -> false 303.07/291.51 le(s(x), s(y)) -> le(x, y) 303.07/291.51 quot(x, y) -> if_quot(minus(x, y), y, le(y, 0), le(y, x)) 303.07/291.51 if_quot(x, y, true, z) -> divByZeroError 303.07/291.51 if_quot(x, y, false, true) -> s(quot(x, y)) 303.07/291.51 if_quot(x, y, false, false) -> 0 303.07/291.51 303.07/291.51 S is empty. 303.07/291.51 Rewrite Strategy: FULL 303.14/291.55 EOF