304.92/291.50 WORST_CASE(Omega(n^1), ?) 304.92/291.50 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 304.92/291.50 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 304.92/291.50 304.92/291.50 304.92/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.92/291.50 304.92/291.50 (0) CpxTRS 304.92/291.50 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 304.92/291.50 (2) TRS for Loop Detection 304.92/291.50 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 304.92/291.50 (4) BEST 304.92/291.50 (5) proven lower bound 304.92/291.50 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 304.92/291.50 (7) BOUNDS(n^1, INF) 304.92/291.50 (8) TRS for Loop Detection 304.92/291.50 304.92/291.50 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (0) 304.92/291.50 Obligation: 304.92/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.92/291.50 304.92/291.50 304.92/291.50 The TRS R consists of the following rules: 304.92/291.50 304.92/291.50 le(0, Y) -> true 304.92/291.50 le(s(X), 0) -> false 304.92/291.50 le(s(X), s(Y)) -> le(X, Y) 304.92/291.50 minus(0, Y) -> 0 304.92/291.50 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) 304.92/291.50 ifMinus(true, s(X), Y) -> 0 304.92/291.50 ifMinus(false, s(X), Y) -> s(minus(X, Y)) 304.92/291.50 quot(0, s(Y)) -> 0 304.92/291.50 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 304.92/291.50 304.92/291.50 S is empty. 304.92/291.50 Rewrite Strategy: FULL 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 304.92/291.50 Transformed a relative TRS into a decreasing-loop problem. 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (2) 304.92/291.50 Obligation: 304.92/291.50 Analyzing the following TRS for decreasing loops: 304.92/291.50 304.92/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.92/291.50 304.92/291.50 304.92/291.50 The TRS R consists of the following rules: 304.92/291.50 304.92/291.50 le(0, Y) -> true 304.92/291.50 le(s(X), 0) -> false 304.92/291.50 le(s(X), s(Y)) -> le(X, Y) 304.92/291.50 minus(0, Y) -> 0 304.92/291.50 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) 304.92/291.50 ifMinus(true, s(X), Y) -> 0 304.92/291.50 ifMinus(false, s(X), Y) -> s(minus(X, Y)) 304.92/291.50 quot(0, s(Y)) -> 0 304.92/291.50 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 304.92/291.50 304.92/291.50 S is empty. 304.92/291.50 Rewrite Strategy: FULL 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (3) DecreasingLoopProof (LOWER BOUND(ID)) 304.92/291.50 The following loop(s) give(s) rise to the lower bound Omega(n^1): 304.92/291.50 304.92/291.50 The rewrite sequence 304.92/291.50 304.92/291.50 le(s(X), s(Y)) ->^+ le(X, Y) 304.92/291.50 304.92/291.50 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 304.92/291.50 304.92/291.50 The pumping substitution is [X / s(X), Y / s(Y)]. 304.92/291.50 304.92/291.50 The result substitution is [ ]. 304.92/291.50 304.92/291.50 304.92/291.50 304.92/291.50 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (4) 304.92/291.50 Complex Obligation (BEST) 304.92/291.50 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (5) 304.92/291.50 Obligation: 304.92/291.50 Proved the lower bound n^1 for the following obligation: 304.92/291.50 304.92/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.92/291.50 304.92/291.50 304.92/291.50 The TRS R consists of the following rules: 304.92/291.50 304.92/291.50 le(0, Y) -> true 304.92/291.50 le(s(X), 0) -> false 304.92/291.50 le(s(X), s(Y)) -> le(X, Y) 304.92/291.50 minus(0, Y) -> 0 304.92/291.50 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) 304.92/291.50 ifMinus(true, s(X), Y) -> 0 304.92/291.50 ifMinus(false, s(X), Y) -> s(minus(X, Y)) 304.92/291.50 quot(0, s(Y)) -> 0 304.92/291.50 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 304.92/291.50 304.92/291.50 S is empty. 304.92/291.50 Rewrite Strategy: FULL 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (6) LowerBoundPropagationProof (FINISHED) 304.92/291.50 Propagated lower bound. 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (7) 304.92/291.50 BOUNDS(n^1, INF) 304.92/291.50 304.92/291.50 ---------------------------------------- 304.92/291.50 304.92/291.50 (8) 304.92/291.50 Obligation: 304.92/291.50 Analyzing the following TRS for decreasing loops: 304.92/291.50 304.92/291.50 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 304.92/291.50 304.92/291.50 304.92/291.50 The TRS R consists of the following rules: 304.92/291.50 304.92/291.50 le(0, Y) -> true 304.92/291.50 le(s(X), 0) -> false 304.92/291.50 le(s(X), s(Y)) -> le(X, Y) 304.92/291.50 minus(0, Y) -> 0 304.92/291.50 minus(s(X), Y) -> ifMinus(le(s(X), Y), s(X), Y) 304.92/291.50 ifMinus(true, s(X), Y) -> 0 304.92/291.50 ifMinus(false, s(X), Y) -> s(minus(X, Y)) 304.92/291.50 quot(0, s(Y)) -> 0 304.92/291.50 quot(s(X), s(Y)) -> s(quot(minus(X, Y), s(Y))) 304.92/291.50 304.92/291.50 S is empty. 304.92/291.50 Rewrite Strategy: FULL 304.92/291.54 EOF