6.10/2.34 WORST_CASE(NON_POLY, ?) 6.10/2.37 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 6.10/2.37 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.10/2.37 6.10/2.37 6.10/2.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.10/2.37 6.10/2.37 (0) CpxTRS 6.10/2.37 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 6.10/2.37 (2) TRS for Loop Detection 6.10/2.37 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 6.10/2.37 (4) BEST 6.10/2.37 (5) proven lower bound 6.10/2.37 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 6.10/2.37 (7) BOUNDS(n^1, INF) 6.10/2.37 (8) TRS for Loop Detection 6.10/2.37 (9) DecreasingLoopProof [FINISHED, 462 ms] 6.10/2.37 (10) BOUNDS(EXP, INF) 6.10/2.37 6.10/2.37 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (0) 6.10/2.37 Obligation: 6.10/2.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.10/2.37 6.10/2.37 6.10/2.37 The TRS R consists of the following rules: 6.10/2.37 6.10/2.37 and(false, false) -> false 6.10/2.37 and(true, false) -> false 6.10/2.37 and(false, true) -> false 6.10/2.37 and(true, true) -> true 6.10/2.37 eq(nil, nil) -> true 6.10/2.37 eq(cons(T, L), nil) -> false 6.10/2.37 eq(nil, cons(T, L)) -> false 6.10/2.37 eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) 6.10/2.37 eq(var(L), var(Lp)) -> eq(L, Lp) 6.10/2.37 eq(var(L), apply(T, S)) -> false 6.10/2.37 eq(var(L), lambda(X, T)) -> false 6.10/2.37 eq(apply(T, S), var(L)) -> false 6.10/2.37 eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) 6.10/2.37 eq(apply(T, S), lambda(X, Tp)) -> false 6.10/2.37 eq(lambda(X, T), var(L)) -> false 6.10/2.37 eq(lambda(X, T), apply(Tp, Sp)) -> false 6.10/2.37 eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) 6.10/2.37 if(true, var(K), var(L)) -> var(K) 6.10/2.37 if(false, var(K), var(L)) -> var(L) 6.10/2.37 ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) 6.10/2.37 ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) 6.10/2.37 ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) 6.10/2.37 6.10/2.37 S is empty. 6.10/2.37 Rewrite Strategy: FULL 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 6.10/2.37 Transformed a relative TRS into a decreasing-loop problem. 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (2) 6.10/2.37 Obligation: 6.10/2.37 Analyzing the following TRS for decreasing loops: 6.10/2.37 6.10/2.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.10/2.37 6.10/2.37 6.10/2.37 The TRS R consists of the following rules: 6.10/2.37 6.10/2.37 and(false, false) -> false 6.10/2.37 and(true, false) -> false 6.10/2.37 and(false, true) -> false 6.10/2.37 and(true, true) -> true 6.10/2.37 eq(nil, nil) -> true 6.10/2.37 eq(cons(T, L), nil) -> false 6.10/2.37 eq(nil, cons(T, L)) -> false 6.10/2.37 eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) 6.10/2.37 eq(var(L), var(Lp)) -> eq(L, Lp) 6.10/2.37 eq(var(L), apply(T, S)) -> false 6.10/2.37 eq(var(L), lambda(X, T)) -> false 6.10/2.37 eq(apply(T, S), var(L)) -> false 6.10/2.37 eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) 6.10/2.37 eq(apply(T, S), lambda(X, Tp)) -> false 6.10/2.37 eq(lambda(X, T), var(L)) -> false 6.10/2.37 eq(lambda(X, T), apply(Tp, Sp)) -> false 6.10/2.37 eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) 6.10/2.37 if(true, var(K), var(L)) -> var(K) 6.10/2.37 if(false, var(K), var(L)) -> var(L) 6.10/2.37 ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) 6.10/2.37 ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) 6.10/2.37 ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) 6.10/2.37 6.10/2.37 S is empty. 6.10/2.37 Rewrite Strategy: FULL 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (3) DecreasingLoopProof (LOWER BOUND(ID)) 6.10/2.37 The following loop(s) give(s) rise to the lower bound Omega(n^1): 6.10/2.37 6.10/2.37 The rewrite sequence 6.10/2.37 6.10/2.37 eq(lambda(X, T), lambda(Xp, Tp)) ->^+ and(eq(T, Tp), eq(X, Xp)) 6.10/2.37 6.10/2.37 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 6.10/2.37 6.10/2.37 The pumping substitution is [T / lambda(X, T), Tp / lambda(Xp, Tp)]. 6.10/2.37 6.10/2.37 The result substitution is [ ]. 6.10/2.37 6.10/2.37 6.10/2.37 6.10/2.37 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (4) 6.10/2.37 Complex Obligation (BEST) 6.10/2.37 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (5) 6.10/2.37 Obligation: 6.10/2.37 Proved the lower bound n^1 for the following obligation: 6.10/2.37 6.10/2.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.10/2.37 6.10/2.37 6.10/2.37 The TRS R consists of the following rules: 6.10/2.37 6.10/2.37 and(false, false) -> false 6.10/2.37 and(true, false) -> false 6.10/2.37 and(false, true) -> false 6.10/2.37 and(true, true) -> true 6.10/2.37 eq(nil, nil) -> true 6.10/2.37 eq(cons(T, L), nil) -> false 6.10/2.37 eq(nil, cons(T, L)) -> false 6.10/2.37 eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) 6.10/2.37 eq(var(L), var(Lp)) -> eq(L, Lp) 6.10/2.37 eq(var(L), apply(T, S)) -> false 6.10/2.37 eq(var(L), lambda(X, T)) -> false 6.10/2.37 eq(apply(T, S), var(L)) -> false 6.10/2.37 eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) 6.10/2.37 eq(apply(T, S), lambda(X, Tp)) -> false 6.10/2.37 eq(lambda(X, T), var(L)) -> false 6.10/2.37 eq(lambda(X, T), apply(Tp, Sp)) -> false 6.10/2.37 eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) 6.10/2.37 if(true, var(K), var(L)) -> var(K) 6.10/2.37 if(false, var(K), var(L)) -> var(L) 6.10/2.37 ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) 6.10/2.37 ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) 6.10/2.37 ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) 6.10/2.37 6.10/2.37 S is empty. 6.10/2.37 Rewrite Strategy: FULL 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (6) LowerBoundPropagationProof (FINISHED) 6.10/2.37 Propagated lower bound. 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (7) 6.10/2.37 BOUNDS(n^1, INF) 6.10/2.37 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (8) 6.10/2.37 Obligation: 6.10/2.37 Analyzing the following TRS for decreasing loops: 6.10/2.37 6.10/2.37 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.10/2.37 6.10/2.37 6.10/2.37 The TRS R consists of the following rules: 6.10/2.37 6.10/2.37 and(false, false) -> false 6.10/2.37 and(true, false) -> false 6.10/2.37 and(false, true) -> false 6.10/2.37 and(true, true) -> true 6.10/2.37 eq(nil, nil) -> true 6.10/2.37 eq(cons(T, L), nil) -> false 6.10/2.37 eq(nil, cons(T, L)) -> false 6.10/2.37 eq(cons(T, L), cons(Tp, Lp)) -> and(eq(T, Tp), eq(L, Lp)) 6.10/2.37 eq(var(L), var(Lp)) -> eq(L, Lp) 6.10/2.37 eq(var(L), apply(T, S)) -> false 6.10/2.37 eq(var(L), lambda(X, T)) -> false 6.10/2.37 eq(apply(T, S), var(L)) -> false 6.10/2.37 eq(apply(T, S), apply(Tp, Sp)) -> and(eq(T, Tp), eq(S, Sp)) 6.10/2.37 eq(apply(T, S), lambda(X, Tp)) -> false 6.10/2.37 eq(lambda(X, T), var(L)) -> false 6.10/2.37 eq(lambda(X, T), apply(Tp, Sp)) -> false 6.10/2.37 eq(lambda(X, T), lambda(Xp, Tp)) -> and(eq(T, Tp), eq(X, Xp)) 6.10/2.37 if(true, var(K), var(L)) -> var(K) 6.10/2.37 if(false, var(K), var(L)) -> var(L) 6.10/2.37 ren(var(L), var(K), var(Lp)) -> if(eq(L, Lp), var(K), var(Lp)) 6.10/2.37 ren(X, Y, apply(T, S)) -> apply(ren(X, Y, T), ren(X, Y, S)) 6.10/2.37 ren(X, Y, lambda(Z, T)) -> lambda(var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), ren(X, Y, ren(Z, var(cons(X, cons(Y, cons(lambda(Z, T), nil)))), T))) 6.10/2.37 6.10/2.37 S is empty. 6.10/2.37 Rewrite Strategy: FULL 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (9) DecreasingLoopProof (FINISHED) 6.10/2.37 The following loop(s) give(s) rise to the lower bound EXP: 6.10/2.37 6.10/2.37 The rewrite sequence 6.10/2.37 6.10/2.37 ren(X, Y, lambda(Z, lambda(Z3_0, T4_0))) ->^+ lambda(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), lambda(var(cons(X, cons(Y, cons(lambda(var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), ren(Z, var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), ren(Z3_0, var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), T4_0))), nil)))), ren(X, Y, ren(var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), var(cons(X, cons(Y, cons(lambda(var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), ren(Z, var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), ren(Z3_0, var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), T4_0))), nil)))), ren(Z, var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), ren(Z3_0, var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), T4_0)))))) 6.10/2.37 6.10/2.37 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0,1,1,0,1,2]. 6.10/2.37 6.10/2.37 The pumping substitution is [T4_0 / lambda(Z, lambda(Z3_0, T4_0))]. 6.10/2.37 6.10/2.37 The result substitution is [X / Z3_0, Y / var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil))))]. 6.10/2.37 6.10/2.37 6.10/2.37 6.10/2.37 The rewrite sequence 6.10/2.37 6.10/2.37 ren(X, Y, lambda(Z, lambda(Z3_0, T4_0))) ->^+ lambda(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), lambda(var(cons(X, cons(Y, cons(lambda(var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), ren(Z, var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), ren(Z3_0, var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), T4_0))), nil)))), ren(X, Y, ren(var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), var(cons(X, cons(Y, cons(lambda(var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), ren(Z, var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), ren(Z3_0, var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), T4_0))), nil)))), ren(Z, var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), ren(Z3_0, var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil)))), T4_0)))))) 6.10/2.37 6.10/2.37 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,2,1,0,1,1,0,1,2]. 6.10/2.37 6.10/2.37 The pumping substitution is [T4_0 / lambda(Z, lambda(Z3_0, T4_0))]. 6.10/2.37 6.10/2.37 The result substitution is [X / Z3_0, Y / var(cons(Z, cons(var(cons(X, cons(Y, cons(lambda(Z, lambda(Z3_0, T4_0)), nil)))), cons(lambda(Z3_0, T4_0), nil))))]. 6.10/2.37 6.10/2.37 6.10/2.37 6.10/2.37 6.10/2.37 ---------------------------------------- 6.10/2.37 6.10/2.37 (10) 6.10/2.37 BOUNDS(EXP, INF) 6.39/2.41 EOF