27.66/8.75 WORST_CASE(Omega(n^1), O(n^1)) 27.66/8.76 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 27.66/8.76 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 27.66/8.76 27.66/8.76 27.66/8.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.66/8.76 27.66/8.76 (0) CpxTRS 27.66/8.76 (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] 27.66/8.76 (2) CpxTRS 27.66/8.76 (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 27.66/8.76 (4) CpxWeightedTrs 27.66/8.76 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 27.66/8.76 (6) CpxTypedWeightedTrs 27.66/8.76 (7) CompletionProof [UPPER BOUND(ID), 0 ms] 27.66/8.76 (8) CpxTypedWeightedCompleteTrs 27.66/8.76 (9) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 3 ms] 27.66/8.76 (10) CpxRNTS 27.66/8.76 (11) CompleteCoflocoProof [FINISHED, 415 ms] 27.66/8.76 (12) BOUNDS(1, n^1) 27.66/8.76 (13) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 27.66/8.76 (14) TRS for Loop Detection 27.66/8.76 (15) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 27.66/8.76 (16) BEST 27.66/8.76 (17) proven lower bound 27.66/8.76 (18) LowerBoundPropagationProof [FINISHED, 0 ms] 27.66/8.76 (19) BOUNDS(n^1, INF) 27.66/8.76 (20) TRS for Loop Detection 27.66/8.76 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (0) 27.66/8.76 Obligation: 27.66/8.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.66/8.76 27.66/8.76 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) 27.66/8.76 quot(0, s(Y)) -> 0 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) 27.66/8.76 log(s(0)) -> 0 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) 27.66/8.76 27.66/8.76 S is empty. 27.66/8.76 Rewrite Strategy: FULL 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) 27.66/8.76 Converted rc-obligation to irc-obligation. 27.66/8.76 27.66/8.76 The duplicating contexts are: 27.66/8.76 quot(s(X), s([])) 27.66/8.76 27.66/8.76 27.66/8.76 The defined contexts are: 27.66/8.76 log(s([])) 27.66/8.76 quot([], s(x1)) 27.66/8.76 min([], x1) 27.66/8.76 quot([], s(s(0))) 27.66/8.76 27.66/8.76 27.66/8.76 [] just represents basic- or constructor-terms in the following defined contexts: 27.66/8.76 quot([], s(x1)) 27.66/8.76 27.66/8.76 27.66/8.76 As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (2) 27.66/8.76 Obligation: 27.66/8.76 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 27.66/8.76 27.66/8.76 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) 27.66/8.76 quot(0, s(Y)) -> 0 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) 27.66/8.76 log(s(0)) -> 0 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) 27.66/8.76 27.66/8.76 S is empty. 27.66/8.76 Rewrite Strategy: INNERMOST 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 27.66/8.76 Transformed relative TRS to weighted TRS 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (4) 27.66/8.76 Obligation: 27.66/8.76 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^1). 27.66/8.76 27.66/8.76 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X [1] 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) [1] 27.66/8.76 quot(0, s(Y)) -> 0 [1] 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) [1] 27.66/8.76 log(s(0)) -> 0 [1] 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) [1] 27.66/8.76 27.66/8.76 Rewrite Strategy: INNERMOST 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 27.66/8.76 Infered types. 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (6) 27.66/8.76 Obligation: 27.66/8.76 Runtime Complexity Weighted TRS with Types. 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X [1] 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) [1] 27.66/8.76 quot(0, s(Y)) -> 0 [1] 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) [1] 27.66/8.76 log(s(0)) -> 0 [1] 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) [1] 27.66/8.76 27.66/8.76 The TRS has the following type information: 27.66/8.76 min :: 0:s -> 0:s -> 0:s 27.66/8.76 0 :: 0:s 27.66/8.76 s :: 0:s -> 0:s 27.66/8.76 quot :: 0:s -> 0:s -> 0:s 27.66/8.76 log :: 0:s -> 0:s 27.66/8.76 27.66/8.76 Rewrite Strategy: INNERMOST 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (7) CompletionProof (UPPER BOUND(ID)) 27.66/8.76 The TRS is a completely defined constructor system, as every type has a constant constructor and the following rules were added: 27.66/8.76 27.66/8.76 min(v0, v1) -> null_min [0] 27.66/8.76 quot(v0, v1) -> null_quot [0] 27.66/8.76 log(v0) -> null_log [0] 27.66/8.76 27.66/8.76 And the following fresh constants: null_min, null_quot, null_log 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (8) 27.66/8.76 Obligation: 27.66/8.76 Runtime Complexity Weighted TRS where all functions are completely defined. The underlying TRS is: 27.66/8.76 27.66/8.76 Runtime Complexity Weighted TRS with Types. 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X [1] 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) [1] 27.66/8.76 quot(0, s(Y)) -> 0 [1] 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) [1] 27.66/8.76 log(s(0)) -> 0 [1] 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) [1] 27.66/8.76 min(v0, v1) -> null_min [0] 27.66/8.76 quot(v0, v1) -> null_quot [0] 27.66/8.76 log(v0) -> null_log [0] 27.66/8.76 27.66/8.76 The TRS has the following type information: 27.66/8.76 min :: 0:s:null_min:null_quot:null_log -> 0:s:null_min:null_quot:null_log -> 0:s:null_min:null_quot:null_log 27.66/8.76 0 :: 0:s:null_min:null_quot:null_log 27.66/8.76 s :: 0:s:null_min:null_quot:null_log -> 0:s:null_min:null_quot:null_log 27.66/8.76 quot :: 0:s:null_min:null_quot:null_log -> 0:s:null_min:null_quot:null_log -> 0:s:null_min:null_quot:null_log 27.66/8.76 log :: 0:s:null_min:null_quot:null_log -> 0:s:null_min:null_quot:null_log 27.66/8.76 null_min :: 0:s:null_min:null_quot:null_log 27.66/8.76 null_quot :: 0:s:null_min:null_quot:null_log 27.66/8.76 null_log :: 0:s:null_min:null_quot:null_log 27.66/8.76 27.66/8.76 Rewrite Strategy: INNERMOST 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 27.66/8.76 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 27.66/8.76 The constant constructors are abstracted as follows: 27.66/8.76 27.66/8.76 0 => 0 27.66/8.76 null_min => 0 27.66/8.76 null_quot => 0 27.66/8.76 null_log => 0 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (10) 27.66/8.76 Obligation: 27.66/8.76 Complexity RNTS consisting of the following rules: 27.66/8.76 27.66/8.76 log(z) -{ 1 }-> 0 :|: z = 1 + 0 27.66/8.76 log(z) -{ 0 }-> 0 :|: v0 >= 0, z = v0 27.66/8.76 log(z) -{ 1 }-> 1 + log(1 + quot(X, 1 + (1 + 0))) :|: z = 1 + (1 + X), X >= 0 27.66/8.76 min(z, z') -{ 1 }-> X :|: X >= 0, z = X, z' = 0 27.66/8.76 min(z, z') -{ 1 }-> min(X, Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 27.66/8.76 min(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 27.66/8.76 quot(z, z') -{ 1 }-> 0 :|: Y >= 0, z' = 1 + Y, z = 0 27.66/8.76 quot(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 27.66/8.76 quot(z, z') -{ 1 }-> 1 + quot(min(X, Y), 1 + Y) :|: z = 1 + X, Y >= 0, z' = 1 + Y, X >= 0 27.66/8.76 27.66/8.76 Only complete derivations are relevant for the runtime complexity. 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (11) CompleteCoflocoProof (FINISHED) 27.66/8.76 Transformed the RNTS (where only complete derivations are relevant) into cost relations for CoFloCo: 27.66/8.76 27.66/8.76 eq(start(V1, V),0,[min(V1, V, Out)],[V1 >= 0,V >= 0]). 27.66/8.76 eq(start(V1, V),0,[quot(V1, V, Out)],[V1 >= 0,V >= 0]). 27.66/8.76 eq(start(V1, V),0,[log(V1, Out)],[V1 >= 0]). 27.66/8.76 eq(min(V1, V, Out),1,[],[Out = X1,X1 >= 0,V1 = X1,V = 0]). 27.66/8.76 eq(min(V1, V, Out),1,[min(X2, Y1, Ret)],[Out = Ret,V1 = 1 + X2,Y1 >= 0,V = 1 + Y1,X2 >= 0]). 27.66/8.76 eq(quot(V1, V, Out),1,[],[Out = 0,Y2 >= 0,V = 1 + Y2,V1 = 0]). 27.66/8.76 eq(quot(V1, V, Out),1,[min(X3, Y3, Ret10),quot(Ret10, 1 + Y3, Ret1)],[Out = 1 + Ret1,V1 = 1 + X3,Y3 >= 0,V = 1 + Y3,X3 >= 0]). 27.66/8.76 eq(log(V1, Out),1,[],[Out = 0,V1 = 1]). 27.66/8.76 eq(log(V1, Out),1,[quot(X4, 1 + (1 + 0), Ret101),log(1 + Ret101, Ret11)],[Out = 1 + Ret11,V1 = 2 + X4,X4 >= 0]). 27.66/8.76 eq(min(V1, V, Out),0,[],[Out = 0,V3 >= 0,V2 >= 0,V1 = V3,V = V2]). 27.66/8.76 eq(quot(V1, V, Out),0,[],[Out = 0,V5 >= 0,V4 >= 0,V1 = V5,V = V4]). 27.66/8.76 eq(log(V1, Out),0,[],[Out = 0,V6 >= 0,V1 = V6]). 27.66/8.76 input_output_vars(min(V1,V,Out),[V1,V],[Out]). 27.66/8.76 input_output_vars(quot(V1,V,Out),[V1,V],[Out]). 27.66/8.76 input_output_vars(log(V1,Out),[V1],[Out]). 27.66/8.76 27.66/8.76 27.66/8.76 CoFloCo proof output: 27.66/8.76 Preprocessing Cost Relations 27.66/8.76 ===================================== 27.66/8.76 27.66/8.76 #### Computed strongly connected components 27.66/8.76 0. recursive : [min/3] 27.66/8.76 1. recursive : [quot/3] 27.66/8.76 2. recursive : [log/2] 27.66/8.76 3. non_recursive : [start/2] 27.66/8.76 27.66/8.76 #### Obtained direct recursion through partial evaluation 27.66/8.76 0. SCC is partially evaluated into min/3 27.66/8.76 1. SCC is partially evaluated into quot/3 27.66/8.76 2. SCC is partially evaluated into log/2 27.66/8.76 3. SCC is partially evaluated into start/2 27.66/8.76 27.66/8.76 Control-Flow Refinement of Cost Relations 27.66/8.76 ===================================== 27.66/8.76 27.66/8.76 ### Specialization of cost equations min/3 27.66/8.76 * CE 6 is refined into CE [13] 27.66/8.76 * CE 4 is refined into CE [14] 27.66/8.76 * CE 5 is refined into CE [15] 27.66/8.76 27.66/8.76 27.66/8.76 ### Cost equations --> "Loop" of min/3 27.66/8.76 * CEs [15] --> Loop 9 27.66/8.76 * CEs [13] --> Loop 10 27.66/8.76 * CEs [14] --> Loop 11 27.66/8.76 27.66/8.76 ### Ranking functions of CR min(V1,V,Out) 27.66/8.76 * RF of phase [9]: [V,V1] 27.66/8.76 27.66/8.76 #### Partial ranking functions of CR min(V1,V,Out) 27.66/8.76 * Partial RF of phase [9]: 27.66/8.76 - RF of loop [9:1]: 27.66/8.76 V 27.66/8.76 V1 27.66/8.76 27.66/8.76 27.66/8.76 ### Specialization of cost equations quot/3 27.66/8.76 * CE 7 is refined into CE [16] 27.66/8.76 * CE 9 is refined into CE [17] 27.66/8.76 * CE 8 is refined into CE [18,19,20] 27.66/8.76 27.66/8.76 27.66/8.76 ### Cost equations --> "Loop" of quot/3 27.66/8.76 * CEs [20] --> Loop 12 27.66/8.76 * CEs [19] --> Loop 13 27.66/8.76 * CEs [18] --> Loop 14 27.66/8.76 * CEs [16,17] --> Loop 15 27.66/8.76 27.66/8.76 ### Ranking functions of CR quot(V1,V,Out) 27.66/8.76 * RF of phase [12]: [V1-1,V1-V+1] 27.66/8.76 * RF of phase [14]: [V1] 27.66/8.76 27.66/8.76 #### Partial ranking functions of CR quot(V1,V,Out) 27.66/8.76 * Partial RF of phase [12]: 27.66/8.76 - RF of loop [12:1]: 27.66/8.76 V1-1 27.66/8.76 V1-V+1 27.66/8.76 * Partial RF of phase [14]: 27.66/8.76 - RF of loop [14:1]: 27.66/8.76 V1 27.66/8.76 27.66/8.76 27.66/8.76 ### Specialization of cost equations log/2 27.66/8.76 * CE 10 is refined into CE [21] 27.66/8.76 * CE 12 is refined into CE [22] 27.66/8.76 * CE 11 is refined into CE [23,24,25,26] 27.66/8.76 27.66/8.76 27.66/8.76 ### Cost equations --> "Loop" of log/2 27.66/8.76 * CEs [26] --> Loop 16 27.66/8.76 * CEs [25] --> Loop 17 27.66/8.76 * CEs [24] --> Loop 18 27.66/8.76 * CEs [23] --> Loop 19 27.66/8.76 * CEs [21,22] --> Loop 20 27.66/8.76 27.66/8.76 ### Ranking functions of CR log(V1,Out) 27.66/8.76 * RF of phase [16,17]: [V1-3,V1/2-3/2] 27.66/8.76 27.66/8.76 #### Partial ranking functions of CR log(V1,Out) 27.66/8.76 * Partial RF of phase [16,17]: 27.66/8.76 - RF of loop [16:1]: 27.66/8.76 V1/2-2 27.66/8.76 - RF of loop [17:1]: 27.66/8.76 V1-3 27.66/8.76 27.66/8.76 27.66/8.76 ### Specialization of cost equations start/2 27.66/8.76 * CE 1 is refined into CE [27,28,29] 27.66/8.76 * CE 2 is refined into CE [30,31,32,33,34] 27.66/8.76 * CE 3 is refined into CE [35,36,37,38,39,40] 27.66/8.76 27.66/8.76 27.66/8.76 ### Cost equations --> "Loop" of start/2 27.66/8.76 * CEs [30] --> Loop 21 27.66/8.76 * CEs [27,28,29,31,32,33,34,35,36,37,38,39,40] --> Loop 22 27.66/8.76 27.66/8.76 ### Ranking functions of CR start(V1,V) 27.66/8.76 27.66/8.76 #### Partial ranking functions of CR start(V1,V) 27.66/8.76 27.66/8.76 27.66/8.76 Computing Bounds 27.66/8.76 ===================================== 27.66/8.76 27.66/8.76 #### Cost of chains of min(V1,V,Out): 27.66/8.76 * Chain [[9],11]: 1*it(9)+1 27.66/8.76 Such that:it(9) =< V 27.66/8.76 27.66/8.76 with precondition: [V1=Out+V,V>=1,V1>=V] 27.66/8.76 27.66/8.76 * Chain [[9],10]: 1*it(9)+0 27.66/8.76 Such that:it(9) =< V 27.66/8.76 27.66/8.76 with precondition: [Out=0,V1>=1,V>=1] 27.66/8.76 27.66/8.76 * Chain [11]: 1 27.66/8.76 with precondition: [V=0,V1=Out,V1>=0] 27.66/8.76 27.66/8.76 * Chain [10]: 0 27.66/8.76 with precondition: [Out=0,V1>=0,V>=0] 27.66/8.76 27.66/8.76 27.66/8.76 #### Cost of chains of quot(V1,V,Out): 27.66/8.76 * Chain [[14],15]: 2*it(14)+1 27.66/8.76 Such that:it(14) =< Out 27.66/8.76 27.66/8.76 with precondition: [V=1,Out>=1,V1>=Out] 27.66/8.76 27.66/8.76 * Chain [[14],13,15]: 2*it(14)+1*s(2)+2 27.66/8.76 Such that:s(2) =< 1 27.66/8.76 it(14) =< Out 27.66/8.76 27.66/8.76 with precondition: [V=1,Out>=2,V1>=Out] 27.66/8.76 27.66/8.76 * Chain [[12],15]: 2*it(12)+1*s(5)+1 27.66/8.76 Such that:it(12) =< V1-V+1 27.66/8.76 aux(3) =< V1 27.66/8.76 it(12) =< aux(3) 27.66/8.76 s(5) =< aux(3) 27.66/8.76 27.66/8.76 with precondition: [V>=2,Out>=1,V1+2>=2*Out+V] 27.66/8.76 27.66/8.76 * Chain [[12],13,15]: 2*it(12)+1*s(2)+1*s(5)+2 27.66/8.76 Such that:it(12) =< V1-V+1 27.66/8.76 s(2) =< V 27.66/8.76 aux(4) =< V1 27.66/8.76 it(12) =< aux(4) 27.66/8.76 s(5) =< aux(4) 27.66/8.76 27.66/8.76 with precondition: [V>=2,Out>=2,V1+3>=2*Out+V] 27.66/8.76 27.66/8.76 * Chain [15]: 1 27.66/8.76 with precondition: [Out=0,V1>=0,V>=0] 27.66/8.76 27.66/8.76 * Chain [13,15]: 1*s(2)+2 27.66/8.76 Such that:s(2) =< V 27.66/8.76 27.66/8.76 with precondition: [Out=1,V1>=1,V>=1] 27.66/8.76 27.66/8.76 27.66/8.76 #### Cost of chains of log(V1,Out): 27.66/8.76 * Chain [[16,17],20]: 3*it(16)+2*it(17)+3*s(21)+1*s(22)+3*s(24)+1 27.66/8.76 Such that:s(25) =< 2*V1 27.66/8.76 aux(14) =< 5/2*V1 27.66/8.76 aux(13) =< 5/2*V1+27/2 27.66/8.76 aux(15) =< V1 27.66/8.76 aux(16) =< V1/2 27.66/8.76 aux(8) =< aux(15) 27.66/8.76 it(16) =< aux(15) 27.66/8.76 it(17) =< aux(15) 27.66/8.76 aux(8) =< aux(16) 27.66/8.76 it(16) =< aux(16) 27.66/8.76 it(17) =< aux(16) 27.66/8.76 it(17) =< aux(13) 27.66/8.76 s(23) =< aux(13) 27.66/8.76 it(17) =< aux(14) 27.66/8.76 s(23) =< aux(14) 27.66/8.76 s(22) =< aux(8)*2 27.66/8.76 s(24) =< s(25) 27.66/8.76 s(21) =< s(23) 27.66/8.76 27.66/8.76 with precondition: [Out>=1,V1>=3*Out+1] 27.66/8.76 27.66/8.76 * Chain [[16,17],19,20]: 3*it(16)+2*it(17)+3*s(21)+1*s(22)+3*s(24)+3 27.66/8.76 Such that:s(25) =< 2*V1 27.66/8.76 aux(14) =< 5/2*V1 27.66/8.76 aux(13) =< 5/2*V1+27/2 27.66/8.76 aux(17) =< V1 27.66/8.76 aux(18) =< V1/2 27.66/8.76 aux(8) =< aux(17) 27.66/8.76 it(16) =< aux(17) 27.66/8.76 it(17) =< aux(17) 27.66/8.76 aux(8) =< aux(18) 27.66/8.76 it(16) =< aux(18) 27.66/8.76 it(17) =< aux(18) 27.66/8.76 it(17) =< aux(13) 27.66/8.76 s(23) =< aux(13) 27.66/8.76 it(17) =< aux(14) 27.66/8.76 s(23) =< aux(14) 27.66/8.76 s(22) =< aux(8)*2 27.66/8.76 s(24) =< s(25) 27.66/8.76 s(21) =< s(23) 27.66/8.76 27.66/8.76 with precondition: [Out>=2,V1+2>=3*Out] 27.66/8.76 27.66/8.76 * Chain [[16,17],18,20]: 3*it(16)+2*it(17)+3*s(21)+1*s(22)+3*s(24)+1*s(26)+4 27.66/8.76 Such that:s(26) =< 2 27.66/8.76 s(25) =< 2*V1 27.66/8.76 aux(14) =< 5/2*V1 27.66/8.76 aux(13) =< 5/2*V1+27/2 27.66/8.76 aux(19) =< V1 27.66/8.76 aux(20) =< V1/2 27.66/8.76 aux(8) =< aux(19) 27.66/8.76 it(16) =< aux(19) 27.66/8.76 it(17) =< aux(19) 27.66/8.76 aux(8) =< aux(20) 27.66/8.76 it(16) =< aux(20) 27.66/8.76 it(17) =< aux(20) 27.66/8.76 it(17) =< aux(13) 27.66/8.76 s(23) =< aux(13) 27.66/8.76 it(17) =< aux(14) 27.66/8.76 s(23) =< aux(14) 27.66/8.76 s(22) =< aux(8)*2 27.66/8.76 s(24) =< s(25) 27.66/8.76 s(21) =< s(23) 27.66/8.76 27.66/8.76 with precondition: [Out>=2,V1+3>=4*Out] 27.66/8.76 27.66/8.76 * Chain [[16,17],18,19,20]: 3*it(16)+2*it(17)+3*s(21)+1*s(22)+3*s(24)+1*s(26)+6 27.66/8.76 Such that:s(26) =< 2 27.66/8.76 s(25) =< 2*V1 27.66/8.76 aux(14) =< 5/2*V1 27.66/8.76 aux(13) =< 5/2*V1+27/2 27.66/8.76 aux(21) =< V1 27.66/8.76 aux(22) =< V1/2 27.66/8.76 aux(8) =< aux(21) 27.66/8.76 it(16) =< aux(21) 27.66/8.76 it(17) =< aux(21) 27.66/8.76 aux(8) =< aux(22) 27.66/8.76 it(16) =< aux(22) 27.66/8.76 it(17) =< aux(22) 27.66/8.76 it(17) =< aux(13) 27.66/8.76 s(23) =< aux(13) 27.66/8.76 it(17) =< aux(14) 27.66/8.76 s(23) =< aux(14) 27.66/8.76 s(22) =< aux(8)*2 27.66/8.76 s(24) =< s(25) 27.66/8.76 s(21) =< s(23) 27.66/8.76 27.66/8.76 with precondition: [Out>=3,V1+7>=4*Out] 27.66/8.76 27.66/8.76 * Chain [20]: 1 27.66/8.76 with precondition: [Out=0,V1>=0] 27.66/8.76 27.66/8.76 * Chain [19,20]: 3 27.66/8.76 with precondition: [Out=1,V1>=2] 27.66/8.76 27.66/8.76 * Chain [18,20]: 1*s(26)+4 27.66/8.76 Such that:s(26) =< 2 27.66/8.76 27.66/8.76 with precondition: [Out=1,V1>=3] 27.66/8.76 27.66/8.76 * Chain [18,19,20]: 1*s(26)+6 27.66/8.76 Such that:s(26) =< 2 27.66/8.76 27.66/8.76 with precondition: [Out=2,V1>=3] 27.66/8.76 27.66/8.76 27.66/8.76 #### Cost of chains of start(V1,V): 27.66/8.76 * Chain [22]: 4*s(53)+4*s(56)+2*s(58)+3*s(63)+12*s(70)+8*s(71)+4*s(73)+12*s(74)+12*s(75)+6 27.66/8.76 Such that:aux(28) =< 2 27.66/8.76 aux(29) =< V1 27.66/8.76 aux(30) =< V1-V+1 27.66/8.76 aux(31) =< 2*V1 27.66/8.76 aux(32) =< V1/2 27.66/8.76 aux(33) =< 5/2*V1 27.66/8.76 aux(34) =< 5/2*V1+27/2 27.66/8.76 aux(35) =< V 27.66/8.76 s(63) =< aux(28) 27.66/8.76 s(56) =< aux(30) 27.66/8.76 s(53) =< aux(35) 27.66/8.76 s(69) =< aux(29) 27.66/8.76 s(70) =< aux(29) 27.66/8.76 s(71) =< aux(29) 27.66/8.76 s(69) =< aux(32) 27.66/8.76 s(70) =< aux(32) 27.66/8.76 s(71) =< aux(32) 27.66/8.76 s(71) =< aux(34) 27.66/8.76 s(72) =< aux(34) 27.66/8.76 s(71) =< aux(33) 27.66/8.76 s(72) =< aux(33) 27.66/8.76 s(73) =< s(69)*2 27.66/8.76 s(74) =< aux(31) 27.66/8.76 s(75) =< s(72) 27.66/8.76 s(56) =< aux(29) 27.66/8.76 s(58) =< aux(29) 27.66/8.76 27.66/8.76 with precondition: [V1>=0] 27.66/8.76 27.66/8.76 * Chain [21]: 1*s(102)+4*s(104)+2 27.66/8.76 Such that:s(102) =< 1 27.66/8.76 s(103) =< V1 27.66/8.76 s(104) =< s(103) 27.66/8.76 27.66/8.76 with precondition: [V=1,V1>=1] 27.66/8.76 27.66/8.76 27.66/8.76 Closed-form bounds of start(V1,V): 27.66/8.76 ------------------------------------- 27.66/8.76 * Chain [22] with precondition: [V1>=0] 27.66/8.76 - Upper bound: 30*V1+12+nat(V)*4+24*V1+(30*V1+162)+nat(V1-V+1)*4 27.66/8.76 - Complexity: n 27.66/8.76 * Chain [21] with precondition: [V=1,V1>=1] 27.66/8.76 - Upper bound: 4*V1+3 27.66/8.76 - Complexity: n 27.66/8.76 27.66/8.76 ### Maximum cost of start(V1,V): 26*V1+9+nat(V)*4+24*V1+(30*V1+162)+nat(V1-V+1)*4+(4*V1+3) 27.66/8.76 Asymptotic class: n 27.66/8.76 * Total analysis performed in 324 ms. 27.66/8.76 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (12) 27.66/8.76 BOUNDS(1, n^1) 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (13) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 27.66/8.76 Transformed a relative TRS into a decreasing-loop problem. 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (14) 27.66/8.76 Obligation: 27.66/8.76 Analyzing the following TRS for decreasing loops: 27.66/8.76 27.66/8.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.66/8.76 27.66/8.76 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) 27.66/8.76 quot(0, s(Y)) -> 0 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) 27.66/8.76 log(s(0)) -> 0 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) 27.66/8.76 27.66/8.76 S is empty. 27.66/8.76 Rewrite Strategy: FULL 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (15) DecreasingLoopProof (LOWER BOUND(ID)) 27.66/8.76 The following loop(s) give(s) rise to the lower bound Omega(n^1): 27.66/8.76 27.66/8.76 The rewrite sequence 27.66/8.76 27.66/8.76 min(s(X), s(Y)) ->^+ min(X, Y) 27.66/8.76 27.66/8.76 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 27.66/8.76 27.66/8.76 The pumping substitution is [X / s(X), Y / s(Y)]. 27.66/8.76 27.66/8.76 The result substitution is [ ]. 27.66/8.76 27.66/8.76 27.66/8.76 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (16) 27.66/8.76 Complex Obligation (BEST) 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (17) 27.66/8.76 Obligation: 27.66/8.76 Proved the lower bound n^1 for the following obligation: 27.66/8.76 27.66/8.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.66/8.76 27.66/8.76 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) 27.66/8.76 quot(0, s(Y)) -> 0 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) 27.66/8.76 log(s(0)) -> 0 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) 27.66/8.76 27.66/8.76 S is empty. 27.66/8.76 Rewrite Strategy: FULL 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (18) LowerBoundPropagationProof (FINISHED) 27.66/8.76 Propagated lower bound. 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (19) 27.66/8.76 BOUNDS(n^1, INF) 27.66/8.76 27.66/8.76 ---------------------------------------- 27.66/8.76 27.66/8.76 (20) 27.66/8.76 Obligation: 27.66/8.76 Analyzing the following TRS for decreasing loops: 27.66/8.76 27.66/8.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 27.66/8.76 27.66/8.76 27.66/8.76 The TRS R consists of the following rules: 27.66/8.76 27.66/8.76 min(X, 0) -> X 27.66/8.76 min(s(X), s(Y)) -> min(X, Y) 27.66/8.76 quot(0, s(Y)) -> 0 27.66/8.76 quot(s(X), s(Y)) -> s(quot(min(X, Y), s(Y))) 27.66/8.76 log(s(0)) -> 0 27.66/8.76 log(s(s(X))) -> s(log(s(quot(X, s(s(0)))))) 27.66/8.76 27.66/8.76 S is empty. 27.66/8.76 Rewrite Strategy: FULL 27.74/8.81 EOF