309.24/291.51 WORST_CASE(Omega(n^1), ?) 309.24/291.52 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 309.24/291.52 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 309.24/291.52 309.24/291.52 309.24/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.24/291.52 309.24/291.52 (0) CpxTRS 309.24/291.52 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 309.24/291.52 (2) TRS for Loop Detection 309.24/291.52 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 309.24/291.52 (4) BEST 309.24/291.52 (5) proven lower bound 309.24/291.52 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 309.24/291.52 (7) BOUNDS(n^1, INF) 309.24/291.52 (8) TRS for Loop Detection 309.24/291.52 309.24/291.52 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (0) 309.24/291.52 Obligation: 309.24/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.24/291.52 309.24/291.52 309.24/291.52 The TRS R consists of the following rules: 309.24/291.52 309.24/291.52 eq(0, 0) -> true 309.24/291.52 eq(0, s(X)) -> false 309.24/291.52 eq(s(X), 0) -> false 309.24/291.52 eq(s(X), s(Y)) -> eq(X, Y) 309.24/291.52 rm(N, nil) -> nil 309.24/291.52 rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X)) 309.24/291.52 ifrm(true, N, add(M, X)) -> rm(N, X) 309.24/291.52 ifrm(false, N, add(M, X)) -> add(M, rm(N, X)) 309.24/291.52 purge(nil) -> nil 309.24/291.52 purge(add(N, X)) -> add(N, purge(rm(N, X))) 309.24/291.52 309.24/291.52 S is empty. 309.24/291.52 Rewrite Strategy: FULL 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 309.24/291.52 Transformed a relative TRS into a decreasing-loop problem. 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (2) 309.24/291.52 Obligation: 309.24/291.52 Analyzing the following TRS for decreasing loops: 309.24/291.52 309.24/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.24/291.52 309.24/291.52 309.24/291.52 The TRS R consists of the following rules: 309.24/291.52 309.24/291.52 eq(0, 0) -> true 309.24/291.52 eq(0, s(X)) -> false 309.24/291.52 eq(s(X), 0) -> false 309.24/291.52 eq(s(X), s(Y)) -> eq(X, Y) 309.24/291.52 rm(N, nil) -> nil 309.24/291.52 rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X)) 309.24/291.52 ifrm(true, N, add(M, X)) -> rm(N, X) 309.24/291.52 ifrm(false, N, add(M, X)) -> add(M, rm(N, X)) 309.24/291.52 purge(nil) -> nil 309.24/291.52 purge(add(N, X)) -> add(N, purge(rm(N, X))) 309.24/291.52 309.24/291.52 S is empty. 309.24/291.52 Rewrite Strategy: FULL 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (3) DecreasingLoopProof (LOWER BOUND(ID)) 309.24/291.52 The following loop(s) give(s) rise to the lower bound Omega(n^1): 309.24/291.52 309.24/291.52 The rewrite sequence 309.24/291.52 309.24/291.52 eq(s(X), s(Y)) ->^+ eq(X, Y) 309.24/291.52 309.24/291.52 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 309.24/291.52 309.24/291.52 The pumping substitution is [X / s(X), Y / s(Y)]. 309.24/291.52 309.24/291.52 The result substitution is [ ]. 309.24/291.52 309.24/291.52 309.24/291.52 309.24/291.52 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (4) 309.24/291.52 Complex Obligation (BEST) 309.24/291.52 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (5) 309.24/291.52 Obligation: 309.24/291.52 Proved the lower bound n^1 for the following obligation: 309.24/291.52 309.24/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.24/291.52 309.24/291.52 309.24/291.52 The TRS R consists of the following rules: 309.24/291.52 309.24/291.52 eq(0, 0) -> true 309.24/291.52 eq(0, s(X)) -> false 309.24/291.52 eq(s(X), 0) -> false 309.24/291.52 eq(s(X), s(Y)) -> eq(X, Y) 309.24/291.52 rm(N, nil) -> nil 309.24/291.52 rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X)) 309.24/291.52 ifrm(true, N, add(M, X)) -> rm(N, X) 309.24/291.52 ifrm(false, N, add(M, X)) -> add(M, rm(N, X)) 309.24/291.52 purge(nil) -> nil 309.24/291.52 purge(add(N, X)) -> add(N, purge(rm(N, X))) 309.24/291.52 309.24/291.52 S is empty. 309.24/291.52 Rewrite Strategy: FULL 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (6) LowerBoundPropagationProof (FINISHED) 309.24/291.52 Propagated lower bound. 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (7) 309.24/291.52 BOUNDS(n^1, INF) 309.24/291.52 309.24/291.52 ---------------------------------------- 309.24/291.52 309.24/291.52 (8) 309.24/291.52 Obligation: 309.24/291.52 Analyzing the following TRS for decreasing loops: 309.24/291.52 309.24/291.52 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.24/291.52 309.24/291.52 309.24/291.52 The TRS R consists of the following rules: 309.24/291.52 309.24/291.52 eq(0, 0) -> true 309.24/291.52 eq(0, s(X)) -> false 309.24/291.52 eq(s(X), 0) -> false 309.24/291.52 eq(s(X), s(Y)) -> eq(X, Y) 309.24/291.52 rm(N, nil) -> nil 309.24/291.52 rm(N, add(M, X)) -> ifrm(eq(N, M), N, add(M, X)) 309.24/291.52 ifrm(true, N, add(M, X)) -> rm(N, X) 309.24/291.52 ifrm(false, N, add(M, X)) -> add(M, rm(N, X)) 309.24/291.52 purge(nil) -> nil 309.24/291.52 purge(add(N, X)) -> add(N, purge(rm(N, X))) 309.24/291.52 309.24/291.52 S is empty. 309.24/291.52 Rewrite Strategy: FULL 309.33/291.55 EOF