3.27/1.59 WORST_CASE(NON_POLY, ?) 3.38/1.60 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.38/1.60 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.38/1.60 3.38/1.60 3.38/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.38/1.60 3.38/1.60 (0) CpxTRS 3.38/1.60 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.38/1.60 (2) TRS for Loop Detection 3.38/1.60 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.38/1.60 (4) BEST 3.38/1.60 (5) proven lower bound 3.38/1.60 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.38/1.60 (7) BOUNDS(n^1, INF) 3.38/1.60 (8) TRS for Loop Detection 3.38/1.60 (9) DecreasingLoopProof [FINISHED, 0 ms] 3.38/1.60 (10) BOUNDS(EXP, INF) 3.38/1.60 3.38/1.60 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (0) 3.38/1.60 Obligation: 3.38/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.38/1.60 3.38/1.60 3.38/1.60 The TRS R consists of the following rules: 3.38/1.60 3.38/1.60 rev1(0, nil) -> 0 3.38/1.60 rev1(s(X), nil) -> s(X) 3.38/1.60 rev1(X, cons(Y, L)) -> rev1(Y, L) 3.38/1.60 rev(nil) -> nil 3.38/1.60 rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) 3.38/1.60 rev2(X, nil) -> nil 3.38/1.60 rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) 3.38/1.60 3.38/1.60 S is empty. 3.38/1.60 Rewrite Strategy: FULL 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.38/1.60 Transformed a relative TRS into a decreasing-loop problem. 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (2) 3.38/1.60 Obligation: 3.38/1.60 Analyzing the following TRS for decreasing loops: 3.38/1.60 3.38/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.38/1.60 3.38/1.60 3.38/1.60 The TRS R consists of the following rules: 3.38/1.60 3.38/1.60 rev1(0, nil) -> 0 3.38/1.60 rev1(s(X), nil) -> s(X) 3.38/1.60 rev1(X, cons(Y, L)) -> rev1(Y, L) 3.38/1.60 rev(nil) -> nil 3.38/1.60 rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) 3.38/1.60 rev2(X, nil) -> nil 3.38/1.60 rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) 3.38/1.60 3.38/1.60 S is empty. 3.38/1.60 Rewrite Strategy: FULL 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.38/1.60 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.38/1.60 3.38/1.60 The rewrite sequence 3.38/1.60 3.38/1.60 rev2(X, cons(Y, L)) ->^+ rev(cons(X, rev(rev2(Y, L)))) 3.38/1.60 3.38/1.60 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. 3.38/1.60 3.38/1.60 The pumping substitution is [L / cons(Y, L)]. 3.38/1.60 3.38/1.60 The result substitution is [X / Y]. 3.38/1.60 3.38/1.60 3.38/1.60 3.38/1.60 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (4) 3.38/1.60 Complex Obligation (BEST) 3.38/1.60 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (5) 3.38/1.60 Obligation: 3.38/1.60 Proved the lower bound n^1 for the following obligation: 3.38/1.60 3.38/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.38/1.60 3.38/1.60 3.38/1.60 The TRS R consists of the following rules: 3.38/1.60 3.38/1.60 rev1(0, nil) -> 0 3.38/1.60 rev1(s(X), nil) -> s(X) 3.38/1.60 rev1(X, cons(Y, L)) -> rev1(Y, L) 3.38/1.60 rev(nil) -> nil 3.38/1.60 rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) 3.38/1.60 rev2(X, nil) -> nil 3.38/1.60 rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) 3.38/1.60 3.38/1.60 S is empty. 3.38/1.60 Rewrite Strategy: FULL 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (6) LowerBoundPropagationProof (FINISHED) 3.38/1.60 Propagated lower bound. 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (7) 3.38/1.60 BOUNDS(n^1, INF) 3.38/1.60 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (8) 3.38/1.60 Obligation: 3.38/1.60 Analyzing the following TRS for decreasing loops: 3.38/1.60 3.38/1.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.38/1.60 3.38/1.60 3.38/1.60 The TRS R consists of the following rules: 3.38/1.60 3.38/1.60 rev1(0, nil) -> 0 3.38/1.60 rev1(s(X), nil) -> s(X) 3.38/1.60 rev1(X, cons(Y, L)) -> rev1(Y, L) 3.38/1.60 rev(nil) -> nil 3.38/1.60 rev(cons(X, L)) -> cons(rev1(X, L), rev2(X, L)) 3.38/1.60 rev2(X, nil) -> nil 3.38/1.60 rev2(X, cons(Y, L)) -> rev(cons(X, rev(rev2(Y, L)))) 3.38/1.60 3.38/1.60 S is empty. 3.38/1.60 Rewrite Strategy: FULL 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (9) DecreasingLoopProof (FINISHED) 3.38/1.60 The following loop(s) give(s) rise to the lower bound EXP: 3.38/1.60 3.38/1.60 The rewrite sequence 3.38/1.60 3.38/1.60 rev2(X, cons(Y, L)) ->^+ cons(rev1(X, rev(rev2(Y, L))), rev2(X, rev(rev2(Y, L)))) 3.38/1.60 3.38/1.60 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1,0]. 3.38/1.60 3.38/1.60 The pumping substitution is [L / cons(Y, L)]. 3.38/1.60 3.38/1.60 The result substitution is [X / Y]. 3.38/1.60 3.38/1.60 3.38/1.60 3.38/1.60 The rewrite sequence 3.38/1.60 3.38/1.60 rev2(X, cons(Y, L)) ->^+ cons(rev1(X, rev(rev2(Y, L))), rev2(X, rev(rev2(Y, L)))) 3.38/1.60 3.38/1.60 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,0]. 3.38/1.60 3.38/1.60 The pumping substitution is [L / cons(Y, L)]. 3.38/1.60 3.38/1.60 The result substitution is [X / Y]. 3.38/1.60 3.38/1.60 3.38/1.60 3.38/1.60 3.38/1.60 ---------------------------------------- 3.38/1.60 3.38/1.60 (10) 3.38/1.60 BOUNDS(EXP, INF) 3.38/1.62 EOF