309.12/291.56 WORST_CASE(Omega(n^1), ?) 309.12/291.57 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 309.12/291.57 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 309.12/291.57 309.12/291.57 309.12/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.12/291.57 309.12/291.57 (0) CpxTRS 309.12/291.57 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 309.12/291.57 (2) TRS for Loop Detection 309.12/291.57 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 309.12/291.57 (4) BEST 309.12/291.57 (5) proven lower bound 309.12/291.57 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 309.12/291.57 (7) BOUNDS(n^1, INF) 309.12/291.57 (8) TRS for Loop Detection 309.12/291.57 309.12/291.57 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (0) 309.12/291.57 Obligation: 309.12/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.12/291.57 309.12/291.57 309.12/291.57 The TRS R consists of the following rules: 309.12/291.57 309.12/291.57 min(x, 0) -> 0 309.12/291.57 min(0, y) -> 0 309.12/291.57 min(s(x), s(y)) -> s(min(x, y)) 309.12/291.57 max(x, 0) -> x 309.12/291.57 max(0, y) -> y 309.12/291.57 max(s(x), s(y)) -> s(max(x, y)) 309.12/291.57 -(x, 0) -> x 309.12/291.57 -(s(x), s(y)) -> -(x, y) 309.12/291.57 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 309.12/291.57 gcd(s(x), 0) -> s(x) 309.12/291.57 gcd(0, s(y)) -> s(y) 309.12/291.57 309.12/291.57 S is empty. 309.12/291.57 Rewrite Strategy: FULL 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 309.12/291.57 Transformed a relative TRS into a decreasing-loop problem. 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (2) 309.12/291.57 Obligation: 309.12/291.57 Analyzing the following TRS for decreasing loops: 309.12/291.57 309.12/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.12/291.57 309.12/291.57 309.12/291.57 The TRS R consists of the following rules: 309.12/291.57 309.12/291.57 min(x, 0) -> 0 309.12/291.57 min(0, y) -> 0 309.12/291.57 min(s(x), s(y)) -> s(min(x, y)) 309.12/291.57 max(x, 0) -> x 309.12/291.57 max(0, y) -> y 309.12/291.57 max(s(x), s(y)) -> s(max(x, y)) 309.12/291.57 -(x, 0) -> x 309.12/291.57 -(s(x), s(y)) -> -(x, y) 309.12/291.57 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 309.12/291.57 gcd(s(x), 0) -> s(x) 309.12/291.57 gcd(0, s(y)) -> s(y) 309.12/291.57 309.12/291.57 S is empty. 309.12/291.57 Rewrite Strategy: FULL 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (3) DecreasingLoopProof (LOWER BOUND(ID)) 309.12/291.57 The following loop(s) give(s) rise to the lower bound Omega(n^1): 309.12/291.57 309.12/291.57 The rewrite sequence 309.12/291.57 309.12/291.57 -(s(x), s(y)) ->^+ -(x, y) 309.12/291.57 309.12/291.57 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 309.12/291.57 309.12/291.57 The pumping substitution is [x / s(x), y / s(y)]. 309.12/291.57 309.12/291.57 The result substitution is [ ]. 309.12/291.57 309.12/291.57 309.12/291.57 309.12/291.57 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (4) 309.12/291.57 Complex Obligation (BEST) 309.12/291.57 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (5) 309.12/291.57 Obligation: 309.12/291.57 Proved the lower bound n^1 for the following obligation: 309.12/291.57 309.12/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.12/291.57 309.12/291.57 309.12/291.57 The TRS R consists of the following rules: 309.12/291.57 309.12/291.57 min(x, 0) -> 0 309.12/291.57 min(0, y) -> 0 309.12/291.57 min(s(x), s(y)) -> s(min(x, y)) 309.12/291.57 max(x, 0) -> x 309.12/291.57 max(0, y) -> y 309.12/291.57 max(s(x), s(y)) -> s(max(x, y)) 309.12/291.57 -(x, 0) -> x 309.12/291.57 -(s(x), s(y)) -> -(x, y) 309.12/291.57 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 309.12/291.57 gcd(s(x), 0) -> s(x) 309.12/291.57 gcd(0, s(y)) -> s(y) 309.12/291.57 309.12/291.57 S is empty. 309.12/291.57 Rewrite Strategy: FULL 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (6) LowerBoundPropagationProof (FINISHED) 309.12/291.57 Propagated lower bound. 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (7) 309.12/291.57 BOUNDS(n^1, INF) 309.12/291.57 309.12/291.57 ---------------------------------------- 309.12/291.57 309.12/291.57 (8) 309.12/291.57 Obligation: 309.12/291.57 Analyzing the following TRS for decreasing loops: 309.12/291.57 309.12/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 309.12/291.57 309.12/291.57 309.12/291.57 The TRS R consists of the following rules: 309.12/291.57 309.12/291.57 min(x, 0) -> 0 309.12/291.57 min(0, y) -> 0 309.12/291.57 min(s(x), s(y)) -> s(min(x, y)) 309.12/291.57 max(x, 0) -> x 309.12/291.57 max(0, y) -> y 309.12/291.57 max(s(x), s(y)) -> s(max(x, y)) 309.12/291.57 -(x, 0) -> x 309.12/291.57 -(s(x), s(y)) -> -(x, y) 309.12/291.57 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 309.12/291.57 gcd(s(x), 0) -> s(x) 309.12/291.57 gcd(0, s(y)) -> s(y) 309.12/291.57 309.12/291.57 S is empty. 309.12/291.57 Rewrite Strategy: FULL 309.21/291.60 EOF