30.17/10.54 WORST_CASE(Omega(n^1), O(n^1)) 30.30/10.55 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 30.30/10.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 30.30/10.55 30.30/10.55 30.30/10.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 30.30/10.55 30.30/10.55 (0) CpxTRS 30.30/10.55 (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] 30.30/10.55 (2) CpxTRS 30.30/10.55 (3) RcToIrcProof [BOTH BOUNDS(ID, ID), 6 ms] 30.30/10.55 (4) CpxTRS 30.30/10.55 (5) CpxTrsToCdtProof [UPPER BOUND(ID), 0 ms] 30.30/10.55 (6) CdtProblem 30.30/10.55 (7) CdtLeafRemovalProof [BOTH BOUNDS(ID, ID), 0 ms] 30.30/10.55 (8) CdtProblem 30.30/10.55 (9) CdtUsableRulesProof [BOTH BOUNDS(ID, ID), 0 ms] 30.30/10.55 (10) CdtProblem 30.30/10.55 (11) CdtRuleRemovalProof [UPPER BOUND(ADD(n^1)), 18 ms] 30.30/10.55 (12) CdtProblem 30.30/10.55 (13) SIsEmptyProof [BOTH BOUNDS(ID, ID), 0 ms] 30.30/10.55 (14) BOUNDS(1, 1) 30.30/10.55 (15) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 30.30/10.55 (16) CpxTRS 30.30/10.55 (17) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 30.30/10.55 (18) typed CpxTrs 30.30/10.55 (19) OrderProof [LOWER BOUND(ID), 0 ms] 30.30/10.55 (20) typed CpxTrs 30.30/10.55 (21) RewriteLemmaProof [LOWER BOUND(ID), 516 ms] 30.30/10.55 (22) BEST 30.30/10.55 (23) proven lower bound 30.30/10.55 (24) LowerBoundPropagationProof [FINISHED, 0 ms] 30.30/10.55 (25) BOUNDS(n^1, INF) 30.30/10.55 (26) typed CpxTrs 30.30/10.55 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (0) 30.30/10.55 Obligation: 30.30/10.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 30.30/10.55 30.30/10.55 30.30/10.55 The TRS R consists of the following rules: 30.30/10.55 30.30/10.55 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.55 d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) 30.30/10.55 d(g(g(0, x), y), 0) -> e(y) 30.30/10.55 d(g(0, x), y) -> e(x) 30.30/10.55 d(g(x, y), z) -> g(d(x, z), e(y)) 30.30/10.55 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.55 30.30/10.55 S is empty. 30.30/10.55 Rewrite Strategy: FULL 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) 30.30/10.55 The following defined symbols can occur below the 0th argument of h: d 30.30/10.55 The following defined symbols can occur below the 0th argument of d: d 30.30/10.55 30.30/10.55 Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: 30.30/10.55 d(g(g(0, x), y), s(z)) -> g(e(x), d(g(g(0, x), y), z)) 30.30/10.55 d(g(g(0, x), y), 0) -> e(y) 30.30/10.55 d(g(0, x), y) -> e(x) 30.30/10.55 d(g(x, y), z) -> g(d(x, z), e(y)) 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (2) 30.30/10.55 Obligation: 30.30/10.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 30.30/10.55 30.30/10.55 30.30/10.55 The TRS R consists of the following rules: 30.30/10.55 30.30/10.55 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.55 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.55 30.30/10.55 S is empty. 30.30/10.55 Rewrite Strategy: FULL 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (3) RcToIrcProof (BOTH BOUNDS(ID, ID)) 30.30/10.55 Converted rc-obligation to irc-obligation. 30.30/10.55 30.30/10.55 As the TRS does not nest defined symbols, we have rc = irc. 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (4) 30.30/10.55 Obligation: 30.30/10.55 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 30.30/10.55 30.30/10.55 30.30/10.55 The TRS R consists of the following rules: 30.30/10.55 30.30/10.55 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.55 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.55 30.30/10.55 S is empty. 30.30/10.55 Rewrite Strategy: INNERMOST 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (5) CpxTrsToCdtProof (UPPER BOUND(ID)) 30.30/10.55 Converted Cpx (relative) TRS to CDT 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (6) 30.30/10.55 Obligation: 30.30/10.55 Complexity Dependency Tuples Problem 30.30/10.55 30.30/10.55 Rules: 30.30/10.55 h(e(z0), z1) -> h(d(z0, z1), s(z1)) 30.30/10.55 g(e(z0), e(z1)) -> e(g(z0, z1)) 30.30/10.55 Tuples: 30.30/10.55 H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 S tuples: 30.30/10.55 H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 K tuples:none 30.30/10.55 Defined Rule Symbols: h_2, g_2 30.30/10.55 30.30/10.55 Defined Pair Symbols: H_2, G_2 30.30/10.55 30.30/10.55 Compound Symbols: c_1, c1_1 30.30/10.55 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (7) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID)) 30.30/10.55 Removed 1 trailing nodes: 30.30/10.55 H(e(z0), z1) -> c(H(d(z0, z1), s(z1))) 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (8) 30.30/10.55 Obligation: 30.30/10.55 Complexity Dependency Tuples Problem 30.30/10.55 30.30/10.55 Rules: 30.30/10.55 h(e(z0), z1) -> h(d(z0, z1), s(z1)) 30.30/10.55 g(e(z0), e(z1)) -> e(g(z0, z1)) 30.30/10.55 Tuples: 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 S tuples: 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 K tuples:none 30.30/10.55 Defined Rule Symbols: h_2, g_2 30.30/10.55 30.30/10.55 Defined Pair Symbols: G_2 30.30/10.55 30.30/10.55 Compound Symbols: c1_1 30.30/10.55 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (9) CdtUsableRulesProof (BOTH BOUNDS(ID, ID)) 30.30/10.55 The following rules are not usable and were removed: 30.30/10.55 h(e(z0), z1) -> h(d(z0, z1), s(z1)) 30.30/10.55 g(e(z0), e(z1)) -> e(g(z0, z1)) 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (10) 30.30/10.55 Obligation: 30.30/10.55 Complexity Dependency Tuples Problem 30.30/10.55 30.30/10.55 Rules:none 30.30/10.55 Tuples: 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 S tuples: 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 K tuples:none 30.30/10.55 Defined Rule Symbols:none 30.30/10.55 30.30/10.55 Defined Pair Symbols: G_2 30.30/10.55 30.30/10.55 Compound Symbols: c1_1 30.30/10.55 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1))) 30.30/10.55 Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S. 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 We considered the (Usable) Rules:none 30.30/10.55 And the Tuples: 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 The order we found is given by the following interpretation: 30.30/10.55 30.30/10.55 Polynomial interpretation : 30.30/10.55 30.30/10.55 POL(G(x_1, x_2)) = x_2 30.30/10.55 POL(c1(x_1)) = x_1 30.30/10.55 POL(e(x_1)) = [1] + x_1 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (12) 30.30/10.55 Obligation: 30.30/10.55 Complexity Dependency Tuples Problem 30.30/10.55 30.30/10.55 Rules:none 30.30/10.55 Tuples: 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 S tuples:none 30.30/10.55 K tuples: 30.30/10.55 G(e(z0), e(z1)) -> c1(G(z0, z1)) 30.30/10.55 Defined Rule Symbols:none 30.30/10.55 30.30/10.55 Defined Pair Symbols: G_2 30.30/10.55 30.30/10.55 Compound Symbols: c1_1 30.30/10.55 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (13) SIsEmptyProof (BOTH BOUNDS(ID, ID)) 30.30/10.55 The set S is empty 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (14) 30.30/10.55 BOUNDS(1, 1) 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (15) RenamingProof (BOTH BOUNDS(ID, ID)) 30.30/10.55 Renamed function symbols to avoid clashes with predefined symbol. 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (16) 30.30/10.55 Obligation: 30.30/10.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 30.30/10.55 30.30/10.55 30.30/10.55 The TRS R consists of the following rules: 30.30/10.55 30.30/10.55 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.55 d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) 30.30/10.55 d(g(g(0', x), y), 0') -> e(y) 30.30/10.55 d(g(0', x), y) -> e(x) 30.30/10.55 d(g(x, y), z) -> g(d(x, z), e(y)) 30.30/10.55 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.55 30.30/10.55 S is empty. 30.30/10.55 Rewrite Strategy: FULL 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (17) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 30.30/10.55 Infered types. 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (18) 30.30/10.55 Obligation: 30.30/10.55 TRS: 30.30/10.55 Rules: 30.30/10.55 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.55 d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) 30.30/10.55 d(g(g(0', x), y), 0') -> e(y) 30.30/10.55 d(g(0', x), y) -> e(x) 30.30/10.55 d(g(x, y), z) -> g(d(x, z), e(y)) 30.30/10.55 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.55 30.30/10.55 Types: 30.30/10.55 h :: e:s:0' -> e:s:0' -> h 30.30/10.55 e :: e:s:0' -> e:s:0' 30.30/10.55 d :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.55 s :: e:s:0' -> e:s:0' 30.30/10.55 g :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.55 0' :: e:s:0' 30.30/10.55 hole_h1_0 :: h 30.30/10.55 hole_e:s:0'2_0 :: e:s:0' 30.30/10.55 gen_e:s:0'3_0 :: Nat -> e:s:0' 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (19) OrderProof (LOWER BOUND(ID)) 30.30/10.55 Heuristically decided to analyse the following defined symbols: 30.30/10.55 h, d, g 30.30/10.55 30.30/10.55 They will be analysed ascendingly in the following order: 30.30/10.55 d < h 30.30/10.55 g < d 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (20) 30.30/10.55 Obligation: 30.30/10.55 TRS: 30.30/10.55 Rules: 30.30/10.55 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.55 d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) 30.30/10.55 d(g(g(0', x), y), 0') -> e(y) 30.30/10.55 d(g(0', x), y) -> e(x) 30.30/10.55 d(g(x, y), z) -> g(d(x, z), e(y)) 30.30/10.55 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.55 30.30/10.55 Types: 30.30/10.55 h :: e:s:0' -> e:s:0' -> h 30.30/10.55 e :: e:s:0' -> e:s:0' 30.30/10.55 d :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.55 s :: e:s:0' -> e:s:0' 30.30/10.55 g :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.55 0' :: e:s:0' 30.30/10.55 hole_h1_0 :: h 30.30/10.55 hole_e:s:0'2_0 :: e:s:0' 30.30/10.55 gen_e:s:0'3_0 :: Nat -> e:s:0' 30.30/10.55 30.30/10.55 30.30/10.55 Generator Equations: 30.30/10.55 gen_e:s:0'3_0(0) <=> 0' 30.30/10.55 gen_e:s:0'3_0(+(x, 1)) <=> e(gen_e:s:0'3_0(x)) 30.30/10.55 30.30/10.55 30.30/10.55 The following defined symbols remain to be analysed: 30.30/10.55 g, h, d 30.30/10.55 30.30/10.55 They will be analysed ascendingly in the following order: 30.30/10.55 d < h 30.30/10.55 g < d 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (21) RewriteLemmaProof (LOWER BOUND(ID)) 30.30/10.55 Proved the following rewrite lemma: 30.30/10.55 g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) 30.30/10.55 30.30/10.55 Induction Base: 30.30/10.55 g(gen_e:s:0'3_0(+(1, 0)), gen_e:s:0'3_0(+(1, 0))) 30.30/10.55 30.30/10.55 Induction Step: 30.30/10.55 g(gen_e:s:0'3_0(+(1, +(n5_0, 1))), gen_e:s:0'3_0(+(1, +(n5_0, 1)))) ->_R^Omega(1) 30.30/10.55 e(g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0)))) ->_IH 30.30/10.55 e(*4_0) 30.30/10.55 30.30/10.55 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (22) 30.30/10.55 Complex Obligation (BEST) 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (23) 30.30/10.55 Obligation: 30.30/10.55 Proved the lower bound n^1 for the following obligation: 30.30/10.55 30.30/10.55 TRS: 30.30/10.55 Rules: 30.30/10.55 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.55 d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) 30.30/10.55 d(g(g(0', x), y), 0') -> e(y) 30.30/10.55 d(g(0', x), y) -> e(x) 30.30/10.55 d(g(x, y), z) -> g(d(x, z), e(y)) 30.30/10.55 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.55 30.30/10.55 Types: 30.30/10.55 h :: e:s:0' -> e:s:0' -> h 30.30/10.55 e :: e:s:0' -> e:s:0' 30.30/10.55 d :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.55 s :: e:s:0' -> e:s:0' 30.30/10.55 g :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.55 0' :: e:s:0' 30.30/10.55 hole_h1_0 :: h 30.30/10.55 hole_e:s:0'2_0 :: e:s:0' 30.30/10.55 gen_e:s:0'3_0 :: Nat -> e:s:0' 30.30/10.55 30.30/10.55 30.30/10.55 Generator Equations: 30.30/10.55 gen_e:s:0'3_0(0) <=> 0' 30.30/10.55 gen_e:s:0'3_0(+(x, 1)) <=> e(gen_e:s:0'3_0(x)) 30.30/10.55 30.30/10.55 30.30/10.55 The following defined symbols remain to be analysed: 30.30/10.55 g, h, d 30.30/10.55 30.30/10.55 They will be analysed ascendingly in the following order: 30.30/10.55 d < h 30.30/10.55 g < d 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (24) LowerBoundPropagationProof (FINISHED) 30.30/10.55 Propagated lower bound. 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (25) 30.30/10.55 BOUNDS(n^1, INF) 30.30/10.55 30.30/10.55 ---------------------------------------- 30.30/10.55 30.30/10.55 (26) 30.30/10.55 Obligation: 30.30/10.55 TRS: 30.30/10.56 Rules: 30.30/10.56 h(e(x), y) -> h(d(x, y), s(y)) 30.30/10.56 d(g(g(0', x), y), s(z)) -> g(e(x), d(g(g(0', x), y), z)) 30.30/10.56 d(g(g(0', x), y), 0') -> e(y) 30.30/10.56 d(g(0', x), y) -> e(x) 30.30/10.56 d(g(x, y), z) -> g(d(x, z), e(y)) 30.30/10.56 g(e(x), e(y)) -> e(g(x, y)) 30.30/10.56 30.30/10.56 Types: 30.30/10.56 h :: e:s:0' -> e:s:0' -> h 30.30/10.56 e :: e:s:0' -> e:s:0' 30.30/10.56 d :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.56 s :: e:s:0' -> e:s:0' 30.30/10.56 g :: e:s:0' -> e:s:0' -> e:s:0' 30.30/10.56 0' :: e:s:0' 30.30/10.56 hole_h1_0 :: h 30.30/10.56 hole_e:s:0'2_0 :: e:s:0' 30.30/10.56 gen_e:s:0'3_0 :: Nat -> e:s:0' 30.30/10.56 30.30/10.56 30.30/10.56 Lemmas: 30.30/10.56 g(gen_e:s:0'3_0(+(1, n5_0)), gen_e:s:0'3_0(+(1, n5_0))) -> *4_0, rt in Omega(n5_0) 30.30/10.56 30.30/10.56 30.30/10.56 Generator Equations: 30.30/10.56 gen_e:s:0'3_0(0) <=> 0' 30.30/10.56 gen_e:s:0'3_0(+(x, 1)) <=> e(gen_e:s:0'3_0(x)) 30.30/10.56 30.30/10.56 30.30/10.56 The following defined symbols remain to be analysed: 30.30/10.56 d, h 30.30/10.56 30.30/10.56 They will be analysed ascendingly in the following order: 30.30/10.56 d < h 30.33/10.60 EOF