3.46/1.77 WORST_CASE(Omega(n^1), O(n^1)) 3.46/1.79 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.46/1.79 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.46/1.79 3.46/1.79 3.46/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.46/1.79 3.46/1.79 (0) CpxTRS 3.46/1.79 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.46/1.79 (2) CpxTRS 3.46/1.79 (3) CpxTrsMatchBoundsTAProof [FINISHED, 47 ms] 3.46/1.79 (4) BOUNDS(1, n^1) 3.46/1.79 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.46/1.79 (6) TRS for Loop Detection 3.46/1.79 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.46/1.79 (8) BEST 3.46/1.79 (9) proven lower bound 3.46/1.79 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.46/1.79 (11) BOUNDS(n^1, INF) 3.46/1.79 (12) TRS for Loop Detection 3.46/1.79 3.46/1.79 3.46/1.79 ---------------------------------------- 3.46/1.79 3.46/1.79 (0) 3.46/1.79 Obligation: 3.46/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.46/1.79 3.46/1.79 3.46/1.79 The TRS R consists of the following rules: 3.46/1.79 3.46/1.79 f(a, empty) -> g(a, empty) 3.46/1.79 f(a, cons(x, k)) -> f(cons(x, a), k) 3.46/1.79 g(empty, d) -> d 3.46/1.79 g(cons(x, k), d) -> g(k, cons(x, d)) 3.46/1.79 3.46/1.79 S is empty. 3.46/1.79 Rewrite Strategy: FULL 3.46/1.79 ---------------------------------------- 3.46/1.79 3.46/1.79 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.46/1.79 transformed relative TRS to TRS 3.46/1.79 ---------------------------------------- 3.46/1.79 3.46/1.79 (2) 3.46/1.79 Obligation: 3.46/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.46/1.79 3.46/1.79 3.46/1.79 The TRS R consists of the following rules: 3.46/1.79 3.46/1.79 f(a, empty) -> g(a, empty) 3.46/1.79 f(a, cons(x, k)) -> f(cons(x, a), k) 3.46/1.79 g(empty, d) -> d 3.46/1.79 g(cons(x, k), d) -> g(k, cons(x, d)) 3.46/1.79 3.46/1.79 S is empty. 3.46/1.79 Rewrite Strategy: FULL 3.46/1.79 ---------------------------------------- 3.46/1.79 3.46/1.79 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.46/1.79 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 3.46/1.79 3.46/1.79 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.46/1.79 final states : [1, 2] 3.46/1.79 transitions: 3.46/1.79 empty0() -> 0 3.46/1.79 cons0(0, 0) -> 0 3.46/1.79 f0(0, 0) -> 1 3.46/1.79 g0(0, 0) -> 2 3.46/1.79 empty1() -> 3 3.46/1.79 g1(0, 3) -> 1 3.46/1.79 cons1(0, 0) -> 4 3.46/1.80 f1(4, 0) -> 1 3.46/1.80 cons1(0, 0) -> 5 3.46/1.80 g1(0, 5) -> 2 3.46/1.80 g1(4, 3) -> 1 3.46/1.80 cons1(0, 4) -> 4 3.46/1.80 cons1(0, 3) -> 5 3.46/1.80 g1(0, 5) -> 1 3.46/1.80 cons1(0, 5) -> 5 3.46/1.80 cons2(0, 3) -> 6 3.46/1.80 g2(0, 6) -> 1 3.46/1.80 g2(4, 6) -> 1 3.46/1.80 cons1(0, 6) -> 5 3.46/1.80 cons2(0, 6) -> 6 3.46/1.80 0 -> 2 3.46/1.80 3 -> 1 3.46/1.80 5 -> 2 3.46/1.80 5 -> 1 3.46/1.80 6 -> 1 3.46/1.80 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (4) 3.46/1.80 BOUNDS(1, n^1) 3.46/1.80 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.46/1.80 Transformed a relative TRS into a decreasing-loop problem. 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (6) 3.46/1.80 Obligation: 3.46/1.80 Analyzing the following TRS for decreasing loops: 3.46/1.80 3.46/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.46/1.80 3.46/1.80 3.46/1.80 The TRS R consists of the following rules: 3.46/1.80 3.46/1.80 f(a, empty) -> g(a, empty) 3.46/1.80 f(a, cons(x, k)) -> f(cons(x, a), k) 3.46/1.80 g(empty, d) -> d 3.46/1.80 g(cons(x, k), d) -> g(k, cons(x, d)) 3.46/1.80 3.46/1.80 S is empty. 3.46/1.80 Rewrite Strategy: FULL 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.46/1.80 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.46/1.80 3.46/1.80 The rewrite sequence 3.46/1.80 3.46/1.80 f(a, cons(x, k)) ->^+ f(cons(x, a), k) 3.46/1.80 3.46/1.80 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.46/1.80 3.46/1.80 The pumping substitution is [k / cons(x, k)]. 3.46/1.80 3.46/1.80 The result substitution is [a / cons(x, a)]. 3.46/1.80 3.46/1.80 3.46/1.80 3.46/1.80 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (8) 3.46/1.80 Complex Obligation (BEST) 3.46/1.80 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (9) 3.46/1.80 Obligation: 3.46/1.80 Proved the lower bound n^1 for the following obligation: 3.46/1.80 3.46/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.46/1.80 3.46/1.80 3.46/1.80 The TRS R consists of the following rules: 3.46/1.80 3.46/1.80 f(a, empty) -> g(a, empty) 3.46/1.80 f(a, cons(x, k)) -> f(cons(x, a), k) 3.46/1.80 g(empty, d) -> d 3.46/1.80 g(cons(x, k), d) -> g(k, cons(x, d)) 3.46/1.80 3.46/1.80 S is empty. 3.46/1.80 Rewrite Strategy: FULL 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (10) LowerBoundPropagationProof (FINISHED) 3.46/1.80 Propagated lower bound. 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (11) 3.46/1.80 BOUNDS(n^1, INF) 3.46/1.80 3.46/1.80 ---------------------------------------- 3.46/1.80 3.46/1.80 (12) 3.46/1.80 Obligation: 3.46/1.80 Analyzing the following TRS for decreasing loops: 3.46/1.80 3.46/1.80 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.46/1.80 3.46/1.80 3.46/1.80 The TRS R consists of the following rules: 3.46/1.80 3.46/1.80 f(a, empty) -> g(a, empty) 3.46/1.80 f(a, cons(x, k)) -> f(cons(x, a), k) 3.46/1.80 g(empty, d) -> d 3.46/1.80 g(cons(x, k), d) -> g(k, cons(x, d)) 3.46/1.80 3.46/1.80 S is empty. 3.46/1.80 Rewrite Strategy: FULL 3.59/1.83 EOF