302.47/291.47 WORST_CASE(Omega(n^1), ?) 302.47/291.47 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 302.47/291.47 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 302.47/291.47 302.47/291.47 302.47/291.47 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 302.47/291.47 302.47/291.47 (0) CpxTRS 302.47/291.47 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 302.47/291.47 (2) CpxTRS 302.47/291.47 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 302.47/291.47 (4) typed CpxTrs 302.47/291.47 (5) OrderProof [LOWER BOUND(ID), 0 ms] 302.47/291.47 (6) typed CpxTrs 302.47/291.47 (7) RewriteLemmaProof [LOWER BOUND(ID), 428 ms] 302.47/291.47 (8) BEST 302.47/291.47 (9) proven lower bound 302.47/291.47 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 302.47/291.47 (11) BOUNDS(n^1, INF) 302.47/291.47 (12) typed CpxTrs 302.47/291.47 302.47/291.47 302.47/291.47 ---------------------------------------- 302.47/291.47 302.47/291.47 (0) 302.47/291.47 Obligation: 302.47/291.47 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 302.47/291.47 302.47/291.47 302.47/291.47 The TRS R consists of the following rules: 302.47/291.47 302.47/291.47 f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) 302.47/291.47 select(cons(ap, xs)) -> ap 302.47/291.47 select(cons(ap, xs)) -> select(xs) 302.47/291.47 addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) 302.47/291.47 302.47/291.47 S is empty. 302.47/291.47 Rewrite Strategy: FULL 302.47/291.47 ---------------------------------------- 302.47/291.47 302.47/291.47 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 302.47/291.47 Renamed function symbols to avoid clashes with predefined symbol. 302.47/291.47 ---------------------------------------- 302.47/291.47 302.47/291.47 (2) 302.47/291.47 Obligation: 302.47/291.47 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 302.47/291.47 302.47/291.47 302.47/291.47 The TRS R consists of the following rules: 302.47/291.47 302.47/291.47 f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) 302.47/291.47 select(cons(ap, xs)) -> ap 302.47/291.47 select(cons(ap, xs)) -> select(xs) 302.47/291.47 addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) 302.47/291.47 302.47/291.47 S is empty. 302.47/291.47 Rewrite Strategy: FULL 302.47/291.47 ---------------------------------------- 302.47/291.47 302.47/291.47 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 302.47/291.47 Infered types. 302.47/291.47 ---------------------------------------- 302.47/291.47 302.47/291.47 (4) 302.47/291.47 Obligation: 302.47/291.47 TRS: 302.47/291.47 Rules: 302.47/291.47 f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) 302.47/291.47 select(cons(ap, xs)) -> ap 302.47/291.47 select(cons(ap, xs)) -> select(xs) 302.47/291.47 addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) 302.47/291.47 302.47/291.47 Types: 302.47/291.47 f :: node -> f 302.47/291.47 node :: s -> cons -> node 302.47/291.48 s :: s -> s 302.47/291.48 addchild :: node -> node -> node 302.47/291.48 select :: cons -> node 302.47/291.48 cons :: node -> cons -> cons 302.47/291.48 hole_f1_0 :: f 302.47/291.48 hole_node2_0 :: node 302.47/291.48 hole_s3_0 :: s 302.47/291.48 hole_cons4_0 :: cons 302.47/291.48 gen_s5_0 :: Nat -> s 302.47/291.48 gen_cons6_0 :: Nat -> cons 302.47/291.48 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (5) OrderProof (LOWER BOUND(ID)) 302.47/291.48 Heuristically decided to analyse the following defined symbols: 302.47/291.48 f, select 302.47/291.48 302.47/291.48 They will be analysed ascendingly in the following order: 302.47/291.48 select < f 302.47/291.48 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (6) 302.47/291.48 Obligation: 302.47/291.48 TRS: 302.47/291.48 Rules: 302.47/291.48 f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) 302.47/291.48 select(cons(ap, xs)) -> ap 302.47/291.48 select(cons(ap, xs)) -> select(xs) 302.47/291.48 addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) 302.47/291.48 302.47/291.48 Types: 302.47/291.48 f :: node -> f 302.47/291.48 node :: s -> cons -> node 302.47/291.48 s :: s -> s 302.47/291.48 addchild :: node -> node -> node 302.47/291.48 select :: cons -> node 302.47/291.48 cons :: node -> cons -> cons 302.47/291.48 hole_f1_0 :: f 302.47/291.48 hole_node2_0 :: node 302.47/291.48 hole_s3_0 :: s 302.47/291.48 hole_cons4_0 :: cons 302.47/291.48 gen_s5_0 :: Nat -> s 302.47/291.48 gen_cons6_0 :: Nat -> cons 302.47/291.48 302.47/291.48 302.47/291.48 Generator Equations: 302.47/291.48 gen_s5_0(0) <=> hole_s3_0 302.47/291.48 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) 302.47/291.48 gen_cons6_0(0) <=> hole_cons4_0 302.47/291.48 gen_cons6_0(+(x, 1)) <=> cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x)) 302.47/291.48 302.47/291.48 302.47/291.48 The following defined symbols remain to be analysed: 302.47/291.48 select, f 302.47/291.48 302.47/291.48 They will be analysed ascendingly in the following order: 302.47/291.48 select < f 302.47/291.48 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (7) RewriteLemmaProof (LOWER BOUND(ID)) 302.47/291.48 Proved the following rewrite lemma: 302.47/291.48 select(gen_cons6_0(+(1, n8_0))) -> *7_0, rt in Omega(n8_0) 302.47/291.48 302.47/291.48 Induction Base: 302.47/291.48 select(gen_cons6_0(+(1, 0))) 302.47/291.48 302.47/291.48 Induction Step: 302.47/291.48 select(gen_cons6_0(+(1, +(n8_0, 1)))) ->_R^Omega(1) 302.47/291.48 select(gen_cons6_0(+(1, n8_0))) ->_IH 302.47/291.48 *7_0 302.47/291.48 302.47/291.48 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (8) 302.47/291.48 Complex Obligation (BEST) 302.47/291.48 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (9) 302.47/291.48 Obligation: 302.47/291.48 Proved the lower bound n^1 for the following obligation: 302.47/291.48 302.47/291.48 TRS: 302.47/291.48 Rules: 302.47/291.48 f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) 302.47/291.48 select(cons(ap, xs)) -> ap 302.47/291.48 select(cons(ap, xs)) -> select(xs) 302.47/291.48 addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) 302.47/291.48 302.47/291.48 Types: 302.47/291.48 f :: node -> f 302.47/291.48 node :: s -> cons -> node 302.47/291.48 s :: s -> s 302.47/291.48 addchild :: node -> node -> node 302.47/291.48 select :: cons -> node 302.47/291.48 cons :: node -> cons -> cons 302.47/291.48 hole_f1_0 :: f 302.47/291.48 hole_node2_0 :: node 302.47/291.48 hole_s3_0 :: s 302.47/291.48 hole_cons4_0 :: cons 302.47/291.48 gen_s5_0 :: Nat -> s 302.47/291.48 gen_cons6_0 :: Nat -> cons 302.47/291.48 302.47/291.48 302.47/291.48 Generator Equations: 302.47/291.48 gen_s5_0(0) <=> hole_s3_0 302.47/291.48 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) 302.47/291.48 gen_cons6_0(0) <=> hole_cons4_0 302.47/291.48 gen_cons6_0(+(x, 1)) <=> cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x)) 302.47/291.48 302.47/291.48 302.47/291.48 The following defined symbols remain to be analysed: 302.47/291.48 select, f 302.47/291.48 302.47/291.48 They will be analysed ascendingly in the following order: 302.47/291.48 select < f 302.47/291.48 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (10) LowerBoundPropagationProof (FINISHED) 302.47/291.48 Propagated lower bound. 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (11) 302.47/291.48 BOUNDS(n^1, INF) 302.47/291.48 302.47/291.48 ---------------------------------------- 302.47/291.48 302.47/291.48 (12) 302.47/291.48 Obligation: 302.47/291.48 TRS: 302.47/291.48 Rules: 302.47/291.48 f(node(s(n), xs)) -> f(addchild(select(xs), node(n, xs))) 302.47/291.48 select(cons(ap, xs)) -> ap 302.47/291.48 select(cons(ap, xs)) -> select(xs) 302.47/291.48 addchild(node(y, ys), node(n, xs)) -> node(y, cons(node(n, xs), ys)) 302.47/291.48 302.47/291.48 Types: 302.47/291.48 f :: node -> f 302.47/291.48 node :: s -> cons -> node 302.47/291.48 s :: s -> s 302.47/291.48 addchild :: node -> node -> node 302.47/291.48 select :: cons -> node 302.47/291.48 cons :: node -> cons -> cons 302.47/291.48 hole_f1_0 :: f 302.47/291.48 hole_node2_0 :: node 302.47/291.48 hole_s3_0 :: s 302.47/291.48 hole_cons4_0 :: cons 302.47/291.48 gen_s5_0 :: Nat -> s 302.47/291.48 gen_cons6_0 :: Nat -> cons 302.47/291.48 302.47/291.48 302.47/291.48 Lemmas: 302.47/291.48 select(gen_cons6_0(+(1, n8_0))) -> *7_0, rt in Omega(n8_0) 302.47/291.48 302.47/291.48 302.47/291.48 Generator Equations: 302.47/291.48 gen_s5_0(0) <=> hole_s3_0 302.47/291.48 gen_s5_0(+(x, 1)) <=> s(gen_s5_0(x)) 302.47/291.48 gen_cons6_0(0) <=> hole_cons4_0 302.47/291.48 gen_cons6_0(+(x, 1)) <=> cons(node(hole_s3_0, hole_cons4_0), gen_cons6_0(x)) 302.47/291.48 302.47/291.48 302.47/291.48 The following defined symbols remain to be analysed: 302.47/291.48 f 302.51/291.51 EOF