311.30/291.50 WORST_CASE(Omega(n^1), ?) 311.37/291.51 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 311.37/291.51 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 311.37/291.51 311.37/291.51 311.37/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.37/291.51 311.37/291.51 (0) CpxTRS 311.37/291.51 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 311.37/291.51 (2) CpxTRS 311.37/291.51 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 311.37/291.51 (4) typed CpxTrs 311.37/291.51 (5) OrderProof [LOWER BOUND(ID), 0 ms] 311.37/291.51 (6) typed CpxTrs 311.37/291.51 (7) RewriteLemmaProof [LOWER BOUND(ID), 346 ms] 311.37/291.51 (8) BEST 311.37/291.51 (9) proven lower bound 311.37/291.51 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 311.37/291.51 (11) BOUNDS(n^1, INF) 311.37/291.51 (12) typed CpxTrs 311.37/291.51 (13) RewriteLemmaProof [LOWER BOUND(ID), 59 ms] 311.37/291.51 (14) typed CpxTrs 311.37/291.51 (15) RewriteLemmaProof [LOWER BOUND(ID), 38 ms] 311.37/291.51 (16) typed CpxTrs 311.37/291.51 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (0) 311.37/291.51 Obligation: 311.37/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.37/291.51 311.37/291.51 311.37/291.51 The TRS R consists of the following rules: 311.37/291.51 311.37/291.51 min(x, 0) -> 0 311.37/291.51 min(0, y) -> 0 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0) -> x 311.37/291.51 max(0, y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0) -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0, 0) -> x 311.37/291.51 gcd(0, y, 0) -> y 311.37/291.51 gcd(0, 0, z) -> z 311.37/291.51 311.37/291.51 S is empty. 311.37/291.51 Rewrite Strategy: FULL 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 311.37/291.51 Renamed function symbols to avoid clashes with predefined symbol. 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (2) 311.37/291.51 Obligation: 311.37/291.51 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 311.37/291.51 311.37/291.51 311.37/291.51 The TRS R consists of the following rules: 311.37/291.51 311.37/291.51 min(x, 0') -> 0' 311.37/291.51 min(0', y) -> 0' 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0') -> x 311.37/291.51 max(0', y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0') -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0', 0') -> x 311.37/291.51 gcd(0', y, 0') -> y 311.37/291.51 gcd(0', 0', z) -> z 311.37/291.51 311.37/291.51 S is empty. 311.37/291.51 Rewrite Strategy: FULL 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 311.37/291.51 Infered types. 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (4) 311.37/291.51 Obligation: 311.37/291.51 TRS: 311.37/291.51 Rules: 311.37/291.51 min(x, 0') -> 0' 311.37/291.51 min(0', y) -> 0' 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0') -> x 311.37/291.51 max(0', y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0') -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0', 0') -> x 311.37/291.51 gcd(0', y, 0') -> y 311.37/291.51 gcd(0', 0', z) -> z 311.37/291.51 311.37/291.51 Types: 311.37/291.51 min :: 0':s -> 0':s -> 0':s 311.37/291.51 0' :: 0':s 311.37/291.51 s :: 0':s -> 0':s 311.37/291.51 max :: 0':s -> 0':s -> 0':s 311.37/291.51 - :: 0':s -> 0':s -> 0':s 311.37/291.51 gcd :: 0':s -> 0':s -> 0':s -> 0':s 311.37/291.51 hole_0':s1_0 :: 0':s 311.37/291.51 gen_0':s2_0 :: Nat -> 0':s 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (5) OrderProof (LOWER BOUND(ID)) 311.37/291.51 Heuristically decided to analyse the following defined symbols: 311.37/291.51 min, max, -, gcd 311.37/291.51 311.37/291.51 They will be analysed ascendingly in the following order: 311.37/291.51 min < gcd 311.37/291.51 max < gcd 311.37/291.51 - < gcd 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (6) 311.37/291.51 Obligation: 311.37/291.51 TRS: 311.37/291.51 Rules: 311.37/291.51 min(x, 0') -> 0' 311.37/291.51 min(0', y) -> 0' 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0') -> x 311.37/291.51 max(0', y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0') -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0', 0') -> x 311.37/291.51 gcd(0', y, 0') -> y 311.37/291.51 gcd(0', 0', z) -> z 311.37/291.51 311.37/291.51 Types: 311.37/291.51 min :: 0':s -> 0':s -> 0':s 311.37/291.51 0' :: 0':s 311.37/291.51 s :: 0':s -> 0':s 311.37/291.51 max :: 0':s -> 0':s -> 0':s 311.37/291.51 - :: 0':s -> 0':s -> 0':s 311.37/291.51 gcd :: 0':s -> 0':s -> 0':s -> 0':s 311.37/291.51 hole_0':s1_0 :: 0':s 311.37/291.51 gen_0':s2_0 :: Nat -> 0':s 311.37/291.51 311.37/291.51 311.37/291.51 Generator Equations: 311.37/291.51 gen_0':s2_0(0) <=> 0' 311.37/291.51 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 311.37/291.51 311.37/291.51 311.37/291.51 The following defined symbols remain to be analysed: 311.37/291.51 min, max, -, gcd 311.37/291.51 311.37/291.51 They will be analysed ascendingly in the following order: 311.37/291.51 min < gcd 311.37/291.51 max < gcd 311.37/291.51 - < gcd 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (7) RewriteLemmaProof (LOWER BOUND(ID)) 311.37/291.51 Proved the following rewrite lemma: 311.37/291.51 min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) 311.37/291.51 311.37/291.51 Induction Base: 311.37/291.51 min(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 311.37/291.51 0' 311.37/291.51 311.37/291.51 Induction Step: 311.37/291.51 min(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) 311.37/291.51 s(min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0))) ->_IH 311.37/291.51 s(gen_0':s2_0(c5_0)) 311.37/291.51 311.37/291.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (8) 311.37/291.51 Complex Obligation (BEST) 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (9) 311.37/291.51 Obligation: 311.37/291.51 Proved the lower bound n^1 for the following obligation: 311.37/291.51 311.37/291.51 TRS: 311.37/291.51 Rules: 311.37/291.51 min(x, 0') -> 0' 311.37/291.51 min(0', y) -> 0' 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0') -> x 311.37/291.51 max(0', y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0') -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0', 0') -> x 311.37/291.51 gcd(0', y, 0') -> y 311.37/291.51 gcd(0', 0', z) -> z 311.37/291.51 311.37/291.51 Types: 311.37/291.51 min :: 0':s -> 0':s -> 0':s 311.37/291.51 0' :: 0':s 311.37/291.51 s :: 0':s -> 0':s 311.37/291.51 max :: 0':s -> 0':s -> 0':s 311.37/291.51 - :: 0':s -> 0':s -> 0':s 311.37/291.51 gcd :: 0':s -> 0':s -> 0':s -> 0':s 311.37/291.51 hole_0':s1_0 :: 0':s 311.37/291.51 gen_0':s2_0 :: Nat -> 0':s 311.37/291.51 311.37/291.51 311.37/291.51 Generator Equations: 311.37/291.51 gen_0':s2_0(0) <=> 0' 311.37/291.51 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 311.37/291.51 311.37/291.51 311.37/291.51 The following defined symbols remain to be analysed: 311.37/291.51 min, max, -, gcd 311.37/291.51 311.37/291.51 They will be analysed ascendingly in the following order: 311.37/291.51 min < gcd 311.37/291.51 max < gcd 311.37/291.51 - < gcd 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (10) LowerBoundPropagationProof (FINISHED) 311.37/291.51 Propagated lower bound. 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (11) 311.37/291.51 BOUNDS(n^1, INF) 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (12) 311.37/291.51 Obligation: 311.37/291.51 TRS: 311.37/291.51 Rules: 311.37/291.51 min(x, 0') -> 0' 311.37/291.51 min(0', y) -> 0' 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0') -> x 311.37/291.51 max(0', y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0') -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0', 0') -> x 311.37/291.51 gcd(0', y, 0') -> y 311.37/291.51 gcd(0', 0', z) -> z 311.37/291.51 311.37/291.51 Types: 311.37/291.51 min :: 0':s -> 0':s -> 0':s 311.37/291.51 0' :: 0':s 311.37/291.51 s :: 0':s -> 0':s 311.37/291.51 max :: 0':s -> 0':s -> 0':s 311.37/291.51 - :: 0':s -> 0':s -> 0':s 311.37/291.51 gcd :: 0':s -> 0':s -> 0':s -> 0':s 311.37/291.51 hole_0':s1_0 :: 0':s 311.37/291.51 gen_0':s2_0 :: Nat -> 0':s 311.37/291.51 311.37/291.51 311.37/291.51 Lemmas: 311.37/291.51 min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) 311.37/291.51 311.37/291.51 311.37/291.51 Generator Equations: 311.37/291.51 gen_0':s2_0(0) <=> 0' 311.37/291.51 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 311.37/291.51 311.37/291.51 311.37/291.51 The following defined symbols remain to be analysed: 311.37/291.51 max, -, gcd 311.37/291.51 311.37/291.51 They will be analysed ascendingly in the following order: 311.37/291.51 max < gcd 311.37/291.51 - < gcd 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (13) RewriteLemmaProof (LOWER BOUND(ID)) 311.37/291.51 Proved the following rewrite lemma: 311.37/291.51 max(gen_0':s2_0(n321_0), gen_0':s2_0(n321_0)) -> gen_0':s2_0(n321_0), rt in Omega(1 + n321_0) 311.37/291.51 311.37/291.51 Induction Base: 311.37/291.51 max(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 311.37/291.51 gen_0':s2_0(0) 311.37/291.51 311.37/291.51 Induction Step: 311.37/291.51 max(gen_0':s2_0(+(n321_0, 1)), gen_0':s2_0(+(n321_0, 1))) ->_R^Omega(1) 311.37/291.51 s(max(gen_0':s2_0(n321_0), gen_0':s2_0(n321_0))) ->_IH 311.37/291.51 s(gen_0':s2_0(c322_0)) 311.37/291.51 311.37/291.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (14) 311.37/291.51 Obligation: 311.37/291.51 TRS: 311.37/291.51 Rules: 311.37/291.51 min(x, 0') -> 0' 311.37/291.51 min(0', y) -> 0' 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0') -> x 311.37/291.51 max(0', y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0') -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0', 0') -> x 311.37/291.51 gcd(0', y, 0') -> y 311.37/291.51 gcd(0', 0', z) -> z 311.37/291.51 311.37/291.51 Types: 311.37/291.51 min :: 0':s -> 0':s -> 0':s 311.37/291.51 0' :: 0':s 311.37/291.51 s :: 0':s -> 0':s 311.37/291.51 max :: 0':s -> 0':s -> 0':s 311.37/291.51 - :: 0':s -> 0':s -> 0':s 311.37/291.51 gcd :: 0':s -> 0':s -> 0':s -> 0':s 311.37/291.51 hole_0':s1_0 :: 0':s 311.37/291.51 gen_0':s2_0 :: Nat -> 0':s 311.37/291.51 311.37/291.51 311.37/291.51 Lemmas: 311.37/291.51 min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) 311.37/291.51 max(gen_0':s2_0(n321_0), gen_0':s2_0(n321_0)) -> gen_0':s2_0(n321_0), rt in Omega(1 + n321_0) 311.37/291.51 311.37/291.51 311.37/291.51 Generator Equations: 311.37/291.51 gen_0':s2_0(0) <=> 0' 311.37/291.51 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 311.37/291.51 311.37/291.51 311.37/291.51 The following defined symbols remain to be analysed: 311.37/291.51 -, gcd 311.37/291.51 311.37/291.51 They will be analysed ascendingly in the following order: 311.37/291.51 - < gcd 311.37/291.51 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (15) RewriteLemmaProof (LOWER BOUND(ID)) 311.37/291.51 Proved the following rewrite lemma: 311.37/291.51 -(gen_0':s2_0(n724_0), gen_0':s2_0(n724_0)) -> gen_0':s2_0(0), rt in Omega(1 + n724_0) 311.37/291.51 311.37/291.51 Induction Base: 311.37/291.51 -(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 311.37/291.51 gen_0':s2_0(0) 311.37/291.51 311.37/291.51 Induction Step: 311.37/291.51 -(gen_0':s2_0(+(n724_0, 1)), gen_0':s2_0(+(n724_0, 1))) ->_R^Omega(1) 311.37/291.51 -(gen_0':s2_0(n724_0), gen_0':s2_0(n724_0)) ->_IH 311.37/291.51 gen_0':s2_0(0) 311.37/291.51 311.37/291.51 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 311.37/291.51 ---------------------------------------- 311.37/291.51 311.37/291.51 (16) 311.37/291.51 Obligation: 311.37/291.51 TRS: 311.37/291.51 Rules: 311.37/291.51 min(x, 0') -> 0' 311.37/291.51 min(0', y) -> 0' 311.37/291.51 min(s(x), s(y)) -> s(min(x, y)) 311.37/291.51 max(x, 0') -> x 311.37/291.51 max(0', y) -> y 311.37/291.51 max(s(x), s(y)) -> s(max(x, y)) 311.37/291.51 -(x, 0') -> x 311.37/291.51 -(s(x), s(y)) -> -(x, y) 311.37/291.51 gcd(s(x), s(y), z) -> gcd(-(max(x, y), min(x, y)), s(min(x, y)), z) 311.37/291.51 gcd(x, s(y), s(z)) -> gcd(x, -(max(y, z), min(y, z)), s(min(y, z))) 311.37/291.51 gcd(s(x), y, s(z)) -> gcd(-(max(x, z), min(x, z)), y, s(min(x, z))) 311.37/291.51 gcd(x, 0', 0') -> x 311.37/291.51 gcd(0', y, 0') -> y 311.37/291.51 gcd(0', 0', z) -> z 311.37/291.51 311.37/291.51 Types: 311.37/291.51 min :: 0':s -> 0':s -> 0':s 311.37/291.51 0' :: 0':s 311.37/291.51 s :: 0':s -> 0':s 311.37/291.51 max :: 0':s -> 0':s -> 0':s 311.37/291.51 - :: 0':s -> 0':s -> 0':s 311.37/291.51 gcd :: 0':s -> 0':s -> 0':s -> 0':s 311.37/291.51 hole_0':s1_0 :: 0':s 311.37/291.51 gen_0':s2_0 :: Nat -> 0':s 311.37/291.51 311.37/291.51 311.37/291.51 Lemmas: 311.37/291.51 min(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(n4_0), rt in Omega(1 + n4_0) 311.37/291.51 max(gen_0':s2_0(n321_0), gen_0':s2_0(n321_0)) -> gen_0':s2_0(n321_0), rt in Omega(1 + n321_0) 311.37/291.51 -(gen_0':s2_0(n724_0), gen_0':s2_0(n724_0)) -> gen_0':s2_0(0), rt in Omega(1 + n724_0) 311.37/291.51 311.37/291.51 311.37/291.51 Generator Equations: 311.37/291.51 gen_0':s2_0(0) <=> 0' 311.37/291.51 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 311.37/291.51 311.37/291.51 311.37/291.51 The following defined symbols remain to be analysed: 311.37/291.51 gcd 311.37/291.55 EOF