308.41/291.57 WORST_CASE(Omega(n^2), ?) 308.41/291.58 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 308.41/291.58 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 308.41/291.58 308.41/291.58 308.41/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 308.41/291.58 308.41/291.58 (0) CpxTRS 308.41/291.58 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 308.41/291.58 (2) CpxTRS 308.41/291.58 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 308.41/291.58 (4) typed CpxTrs 308.41/291.58 (5) OrderProof [LOWER BOUND(ID), 0 ms] 308.41/291.58 (6) typed CpxTrs 308.41/291.58 (7) RewriteLemmaProof [LOWER BOUND(ID), 313 ms] 308.41/291.58 (8) BEST 308.41/291.58 (9) proven lower bound 308.41/291.58 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 308.41/291.58 (11) BOUNDS(n^1, INF) 308.41/291.58 (12) typed CpxTrs 308.41/291.58 (13) RewriteLemmaProof [LOWER BOUND(ID), 74 ms] 308.41/291.58 (14) typed CpxTrs 308.41/291.58 (15) RewriteLemmaProof [LOWER BOUND(ID), 27 ms] 308.41/291.58 (16) typed CpxTrs 308.41/291.58 (17) RewriteLemmaProof [LOWER BOUND(ID), 0 ms] 308.41/291.58 (18) typed CpxTrs 308.41/291.58 (19) RewriteLemmaProof [LOWER BOUND(ID), 60 ms] 308.41/291.58 (20) BEST 308.41/291.58 (21) proven lower bound 308.41/291.58 (22) LowerBoundPropagationProof [FINISHED, 0 ms] 308.48/291.58 (23) BOUNDS(n^2, INF) 308.48/291.58 (24) typed CpxTrs 308.48/291.58 308.48/291.58 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (0) 308.48/291.58 Obligation: 308.48/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 308.48/291.58 308.48/291.58 308.48/291.58 The TRS R consists of the following rules: 308.48/291.58 308.48/291.58 min(0, y) -> 0 308.48/291.58 min(x, 0) -> 0 308.48/291.58 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.58 max(0, y) -> y 308.48/291.58 max(x, 0) -> x 308.48/291.58 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.58 +(0, y) -> y 308.48/291.58 +(s(x), y) -> s(+(x, y)) 308.48/291.58 -(x, 0) -> x 308.48/291.58 -(s(x), s(y)) -> -(x, y) 308.48/291.58 *(x, 0) -> 0 308.48/291.58 *(x, s(y)) -> +(x, *(x, y)) 308.48/291.58 f(s(x)) -> f(-(max(*(s(x), s(x)), +(s(x), s(s(s(0))))), max(s(*(s(x), s(x))), +(s(x), s(s(s(s(0)))))))) 308.48/291.58 308.48/291.58 S is empty. 308.48/291.58 Rewrite Strategy: FULL 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 308.48/291.58 Renamed function symbols to avoid clashes with predefined symbol. 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (2) 308.48/291.58 Obligation: 308.48/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 308.48/291.58 308.48/291.58 308.48/291.58 The TRS R consists of the following rules: 308.48/291.58 308.48/291.58 min(0', y) -> 0' 308.48/291.58 min(x, 0') -> 0' 308.48/291.58 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.58 max(0', y) -> y 308.48/291.58 max(x, 0') -> x 308.48/291.58 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.58 +'(0', y) -> y 308.48/291.58 +'(s(x), y) -> s(+'(x, y)) 308.48/291.58 -(x, 0') -> x 308.48/291.58 -(s(x), s(y)) -> -(x, y) 308.48/291.58 *'(x, 0') -> 0' 308.48/291.58 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.58 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.58 308.48/291.58 S is empty. 308.48/291.58 Rewrite Strategy: FULL 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 308.48/291.58 Infered types. 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (4) 308.48/291.58 Obligation: 308.48/291.58 TRS: 308.48/291.58 Rules: 308.48/291.58 min(0', y) -> 0' 308.48/291.58 min(x, 0') -> 0' 308.48/291.58 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.58 max(0', y) -> y 308.48/291.58 max(x, 0') -> x 308.48/291.58 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.58 +'(0', y) -> y 308.48/291.58 +'(s(x), y) -> s(+'(x, y)) 308.48/291.58 -(x, 0') -> x 308.48/291.58 -(s(x), s(y)) -> -(x, y) 308.48/291.58 *'(x, 0') -> 0' 308.48/291.58 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.58 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.58 308.48/291.58 Types: 308.48/291.58 min :: 0':s -> 0':s -> 0':s 308.48/291.58 0' :: 0':s 308.48/291.58 s :: 0':s -> 0':s 308.48/291.58 max :: 0':s -> 0':s -> 0':s 308.48/291.58 +' :: 0':s -> 0':s -> 0':s 308.48/291.58 - :: 0':s -> 0':s -> 0':s 308.48/291.58 *' :: 0':s -> 0':s -> 0':s 308.48/291.58 f :: 0':s -> f 308.48/291.58 hole_0':s1_0 :: 0':s 308.48/291.58 hole_f2_0 :: f 308.48/291.58 gen_0':s3_0 :: Nat -> 0':s 308.48/291.58 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (5) OrderProof (LOWER BOUND(ID)) 308.48/291.58 Heuristically decided to analyse the following defined symbols: 308.48/291.58 min, max, +', -, *', f 308.48/291.58 308.48/291.58 They will be analysed ascendingly in the following order: 308.48/291.58 max < f 308.48/291.58 +' < *' 308.48/291.58 +' < f 308.48/291.58 - < f 308.48/291.58 *' < f 308.48/291.58 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (6) 308.48/291.58 Obligation: 308.48/291.58 TRS: 308.48/291.58 Rules: 308.48/291.58 min(0', y) -> 0' 308.48/291.58 min(x, 0') -> 0' 308.48/291.58 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.58 max(0', y) -> y 308.48/291.58 max(x, 0') -> x 308.48/291.58 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.58 +'(0', y) -> y 308.48/291.58 +'(s(x), y) -> s(+'(x, y)) 308.48/291.58 -(x, 0') -> x 308.48/291.58 -(s(x), s(y)) -> -(x, y) 308.48/291.58 *'(x, 0') -> 0' 308.48/291.58 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.58 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.58 308.48/291.58 Types: 308.48/291.58 min :: 0':s -> 0':s -> 0':s 308.48/291.58 0' :: 0':s 308.48/291.58 s :: 0':s -> 0':s 308.48/291.58 max :: 0':s -> 0':s -> 0':s 308.48/291.58 +' :: 0':s -> 0':s -> 0':s 308.48/291.58 - :: 0':s -> 0':s -> 0':s 308.48/291.58 *' :: 0':s -> 0':s -> 0':s 308.48/291.58 f :: 0':s -> f 308.48/291.58 hole_0':s1_0 :: 0':s 308.48/291.58 hole_f2_0 :: f 308.48/291.58 gen_0':s3_0 :: Nat -> 0':s 308.48/291.58 308.48/291.58 308.48/291.58 Generator Equations: 308.48/291.58 gen_0':s3_0(0) <=> 0' 308.48/291.58 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.58 308.48/291.58 308.48/291.58 The following defined symbols remain to be analysed: 308.48/291.58 min, max, +', -, *', f 308.48/291.58 308.48/291.58 They will be analysed ascendingly in the following order: 308.48/291.58 max < f 308.48/291.58 +' < *' 308.48/291.58 +' < f 308.48/291.58 - < f 308.48/291.58 *' < f 308.48/291.58 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (7) RewriteLemmaProof (LOWER BOUND(ID)) 308.48/291.58 Proved the following rewrite lemma: 308.48/291.58 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 308.48/291.58 308.48/291.58 Induction Base: 308.48/291.58 min(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 308.48/291.58 0' 308.48/291.58 308.48/291.58 Induction Step: 308.48/291.58 min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 308.48/291.58 s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) ->_IH 308.48/291.58 s(gen_0':s3_0(c6_0)) 308.48/291.58 308.48/291.58 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (8) 308.48/291.58 Complex Obligation (BEST) 308.48/291.58 308.48/291.58 ---------------------------------------- 308.48/291.58 308.48/291.58 (9) 308.48/291.58 Obligation: 308.48/291.58 Proved the lower bound n^1 for the following obligation: 308.48/291.58 308.48/291.58 TRS: 308.48/291.58 Rules: 308.48/291.58 min(0', y) -> 0' 308.48/291.58 min(x, 0') -> 0' 308.48/291.58 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.58 max(0', y) -> y 308.48/291.58 max(x, 0') -> x 308.48/291.58 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.58 +'(0', y) -> y 308.48/291.58 +'(s(x), y) -> s(+'(x, y)) 308.48/291.58 -(x, 0') -> x 308.48/291.58 -(s(x), s(y)) -> -(x, y) 308.48/291.58 *'(x, 0') -> 0' 308.48/291.58 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.58 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.58 308.48/291.58 Types: 308.48/291.58 min :: 0':s -> 0':s -> 0':s 308.48/291.58 0' :: 0':s 308.48/291.58 s :: 0':s -> 0':s 308.48/291.58 max :: 0':s -> 0':s -> 0':s 308.48/291.58 +' :: 0':s -> 0':s -> 0':s 308.48/291.58 - :: 0':s -> 0':s -> 0':s 308.48/291.58 *' :: 0':s -> 0':s -> 0':s 308.48/291.58 f :: 0':s -> f 308.48/291.58 hole_0':s1_0 :: 0':s 308.48/291.58 hole_f2_0 :: f 308.48/291.58 gen_0':s3_0 :: Nat -> 0':s 308.48/291.58 308.48/291.58 308.48/291.58 Generator Equations: 308.48/291.58 gen_0':s3_0(0) <=> 0' 308.48/291.58 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.58 308.48/291.58 308.48/291.58 The following defined symbols remain to be analysed: 308.48/291.58 min, max, +', -, *', f 308.48/291.58 308.48/291.58 They will be analysed ascendingly in the following order: 308.48/291.58 max < f 308.48/291.58 +' < *' 308.48/291.58 +' < f 308.48/291.58 - < f 308.48/291.58 *' < f 308.48/291.58 308.48/291.58 ---------------------------------------- 308.48/291.59 308.48/291.59 (10) LowerBoundPropagationProof (FINISHED) 308.48/291.59 Propagated lower bound. 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (11) 308.48/291.59 BOUNDS(n^1, INF) 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (12) 308.48/291.59 Obligation: 308.48/291.59 TRS: 308.48/291.59 Rules: 308.48/291.59 min(0', y) -> 0' 308.48/291.59 min(x, 0') -> 0' 308.48/291.59 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.59 max(0', y) -> y 308.48/291.59 max(x, 0') -> x 308.48/291.59 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.59 +'(0', y) -> y 308.48/291.59 +'(s(x), y) -> s(+'(x, y)) 308.48/291.59 -(x, 0') -> x 308.48/291.59 -(s(x), s(y)) -> -(x, y) 308.48/291.59 *'(x, 0') -> 0' 308.48/291.59 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.59 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.59 308.48/291.59 Types: 308.48/291.59 min :: 0':s -> 0':s -> 0':s 308.48/291.59 0' :: 0':s 308.48/291.59 s :: 0':s -> 0':s 308.48/291.59 max :: 0':s -> 0':s -> 0':s 308.48/291.59 +' :: 0':s -> 0':s -> 0':s 308.48/291.59 - :: 0':s -> 0':s -> 0':s 308.48/291.59 *' :: 0':s -> 0':s -> 0':s 308.48/291.59 f :: 0':s -> f 308.48/291.59 hole_0':s1_0 :: 0':s 308.48/291.59 hole_f2_0 :: f 308.48/291.59 gen_0':s3_0 :: Nat -> 0':s 308.48/291.59 308.48/291.59 308.48/291.59 Lemmas: 308.48/291.59 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 308.48/291.59 308.48/291.59 308.48/291.59 Generator Equations: 308.48/291.59 gen_0':s3_0(0) <=> 0' 308.48/291.59 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.59 308.48/291.59 308.48/291.59 The following defined symbols remain to be analysed: 308.48/291.59 max, +', -, *', f 308.48/291.59 308.48/291.59 They will be analysed ascendingly in the following order: 308.48/291.59 max < f 308.48/291.59 +' < *' 308.48/291.59 +' < f 308.48/291.59 - < f 308.48/291.59 *' < f 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (13) RewriteLemmaProof (LOWER BOUND(ID)) 308.48/291.59 Proved the following rewrite lemma: 308.48/291.59 max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) 308.48/291.59 308.48/291.59 Induction Base: 308.48/291.59 max(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 308.48/291.59 gen_0':s3_0(0) 308.48/291.59 308.48/291.59 Induction Step: 308.48/291.59 max(gen_0':s3_0(+(n315_0, 1)), gen_0':s3_0(+(n315_0, 1))) ->_R^Omega(1) 308.48/291.59 s(max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0))) ->_IH 308.48/291.59 s(gen_0':s3_0(c316_0)) 308.48/291.59 308.48/291.59 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (14) 308.48/291.59 Obligation: 308.48/291.59 TRS: 308.48/291.59 Rules: 308.48/291.59 min(0', y) -> 0' 308.48/291.59 min(x, 0') -> 0' 308.48/291.59 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.59 max(0', y) -> y 308.48/291.59 max(x, 0') -> x 308.48/291.59 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.59 +'(0', y) -> y 308.48/291.59 +'(s(x), y) -> s(+'(x, y)) 308.48/291.59 -(x, 0') -> x 308.48/291.59 -(s(x), s(y)) -> -(x, y) 308.48/291.59 *'(x, 0') -> 0' 308.48/291.59 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.59 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.59 308.48/291.59 Types: 308.48/291.59 min :: 0':s -> 0':s -> 0':s 308.48/291.59 0' :: 0':s 308.48/291.59 s :: 0':s -> 0':s 308.48/291.59 max :: 0':s -> 0':s -> 0':s 308.48/291.59 +' :: 0':s -> 0':s -> 0':s 308.48/291.59 - :: 0':s -> 0':s -> 0':s 308.48/291.59 *' :: 0':s -> 0':s -> 0':s 308.48/291.59 f :: 0':s -> f 308.48/291.59 hole_0':s1_0 :: 0':s 308.48/291.59 hole_f2_0 :: f 308.48/291.59 gen_0':s3_0 :: Nat -> 0':s 308.48/291.59 308.48/291.59 308.48/291.59 Lemmas: 308.48/291.59 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 308.48/291.59 max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) 308.48/291.59 308.48/291.59 308.48/291.59 Generator Equations: 308.48/291.59 gen_0':s3_0(0) <=> 0' 308.48/291.59 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.59 308.48/291.59 308.48/291.59 The following defined symbols remain to be analysed: 308.48/291.59 +', -, *', f 308.48/291.59 308.48/291.59 They will be analysed ascendingly in the following order: 308.48/291.59 +' < *' 308.48/291.59 +' < f 308.48/291.59 - < f 308.48/291.59 *' < f 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (15) RewriteLemmaProof (LOWER BOUND(ID)) 308.48/291.59 Proved the following rewrite lemma: 308.48/291.59 +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) 308.48/291.59 308.48/291.59 Induction Base: 308.48/291.59 +'(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 308.48/291.59 gen_0':s3_0(b) 308.48/291.59 308.48/291.59 Induction Step: 308.48/291.59 +'(gen_0':s3_0(+(n709_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) 308.48/291.59 s(+'(gen_0':s3_0(n709_0), gen_0':s3_0(b))) ->_IH 308.48/291.59 s(gen_0':s3_0(+(b, c710_0))) 308.48/291.59 308.48/291.59 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (16) 308.48/291.59 Obligation: 308.48/291.59 TRS: 308.48/291.59 Rules: 308.48/291.59 min(0', y) -> 0' 308.48/291.59 min(x, 0') -> 0' 308.48/291.59 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.59 max(0', y) -> y 308.48/291.59 max(x, 0') -> x 308.48/291.59 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.59 +'(0', y) -> y 308.48/291.59 +'(s(x), y) -> s(+'(x, y)) 308.48/291.59 -(x, 0') -> x 308.48/291.59 -(s(x), s(y)) -> -(x, y) 308.48/291.59 *'(x, 0') -> 0' 308.48/291.59 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.59 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.59 308.48/291.59 Types: 308.48/291.59 min :: 0':s -> 0':s -> 0':s 308.48/291.59 0' :: 0':s 308.48/291.59 s :: 0':s -> 0':s 308.48/291.59 max :: 0':s -> 0':s -> 0':s 308.48/291.59 +' :: 0':s -> 0':s -> 0':s 308.48/291.59 - :: 0':s -> 0':s -> 0':s 308.48/291.59 *' :: 0':s -> 0':s -> 0':s 308.48/291.59 f :: 0':s -> f 308.48/291.59 hole_0':s1_0 :: 0':s 308.48/291.59 hole_f2_0 :: f 308.48/291.59 gen_0':s3_0 :: Nat -> 0':s 308.48/291.59 308.48/291.59 308.48/291.59 Lemmas: 308.48/291.59 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 308.48/291.59 max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) 308.48/291.59 +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) 308.48/291.59 308.48/291.59 308.48/291.59 Generator Equations: 308.48/291.59 gen_0':s3_0(0) <=> 0' 308.48/291.59 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.59 308.48/291.59 308.48/291.59 The following defined symbols remain to be analysed: 308.48/291.59 -, *', f 308.48/291.59 308.48/291.59 They will be analysed ascendingly in the following order: 308.48/291.59 - < f 308.48/291.59 *' < f 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (17) RewriteLemmaProof (LOWER BOUND(ID)) 308.48/291.59 Proved the following rewrite lemma: 308.48/291.59 -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) 308.48/291.59 308.48/291.59 Induction Base: 308.48/291.59 -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 308.48/291.59 gen_0':s3_0(0) 308.48/291.59 308.48/291.59 Induction Step: 308.48/291.59 -(gen_0':s3_0(+(n1306_0, 1)), gen_0':s3_0(+(n1306_0, 1))) ->_R^Omega(1) 308.48/291.59 -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) ->_IH 308.48/291.59 gen_0':s3_0(0) 308.48/291.59 308.48/291.59 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (18) 308.48/291.59 Obligation: 308.48/291.59 TRS: 308.48/291.59 Rules: 308.48/291.59 min(0', y) -> 0' 308.48/291.59 min(x, 0') -> 0' 308.48/291.59 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.59 max(0', y) -> y 308.48/291.59 max(x, 0') -> x 308.48/291.59 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.59 +'(0', y) -> y 308.48/291.59 +'(s(x), y) -> s(+'(x, y)) 308.48/291.59 -(x, 0') -> x 308.48/291.59 -(s(x), s(y)) -> -(x, y) 308.48/291.59 *'(x, 0') -> 0' 308.48/291.59 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.59 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.59 308.48/291.59 Types: 308.48/291.59 min :: 0':s -> 0':s -> 0':s 308.48/291.59 0' :: 0':s 308.48/291.59 s :: 0':s -> 0':s 308.48/291.59 max :: 0':s -> 0':s -> 0':s 308.48/291.59 +' :: 0':s -> 0':s -> 0':s 308.48/291.59 - :: 0':s -> 0':s -> 0':s 308.48/291.59 *' :: 0':s -> 0':s -> 0':s 308.48/291.59 f :: 0':s -> f 308.48/291.59 hole_0':s1_0 :: 0':s 308.48/291.59 hole_f2_0 :: f 308.48/291.59 gen_0':s3_0 :: Nat -> 0':s 308.48/291.59 308.48/291.59 308.48/291.59 Lemmas: 308.48/291.59 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 308.48/291.59 max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) 308.48/291.59 +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) 308.48/291.59 -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) 308.48/291.59 308.48/291.59 308.48/291.59 Generator Equations: 308.48/291.59 gen_0':s3_0(0) <=> 0' 308.48/291.59 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.59 308.48/291.59 308.48/291.59 The following defined symbols remain to be analysed: 308.48/291.59 *', f 308.48/291.59 308.48/291.59 They will be analysed ascendingly in the following order: 308.48/291.59 *' < f 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (19) RewriteLemmaProof (LOWER BOUND(ID)) 308.48/291.59 Proved the following rewrite lemma: 308.48/291.59 *'(gen_0':s3_0(a), gen_0':s3_0(n1598_0)) -> gen_0':s3_0(*(n1598_0, a)), rt in Omega(1 + a*n1598_0 + n1598_0) 308.48/291.59 308.48/291.59 Induction Base: 308.48/291.59 *'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) 308.48/291.59 0' 308.48/291.59 308.48/291.59 Induction Step: 308.48/291.59 *'(gen_0':s3_0(a), gen_0':s3_0(+(n1598_0, 1))) ->_R^Omega(1) 308.48/291.59 +'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n1598_0))) ->_IH 308.48/291.59 +'(gen_0':s3_0(a), gen_0':s3_0(*(c1599_0, a))) ->_L^Omega(1 + a) 308.48/291.59 gen_0':s3_0(+(a, *(n1598_0, a))) 308.48/291.59 308.48/291.59 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (20) 308.48/291.59 Complex Obligation (BEST) 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (21) 308.48/291.59 Obligation: 308.48/291.59 Proved the lower bound n^2 for the following obligation: 308.48/291.59 308.48/291.59 TRS: 308.48/291.59 Rules: 308.48/291.59 min(0', y) -> 0' 308.48/291.59 min(x, 0') -> 0' 308.48/291.59 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.59 max(0', y) -> y 308.48/291.59 max(x, 0') -> x 308.48/291.59 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.59 +'(0', y) -> y 308.48/291.59 +'(s(x), y) -> s(+'(x, y)) 308.48/291.59 -(x, 0') -> x 308.48/291.59 -(s(x), s(y)) -> -(x, y) 308.48/291.59 *'(x, 0') -> 0' 308.48/291.59 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.59 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.59 308.48/291.59 Types: 308.48/291.59 min :: 0':s -> 0':s -> 0':s 308.48/291.59 0' :: 0':s 308.48/291.59 s :: 0':s -> 0':s 308.48/291.59 max :: 0':s -> 0':s -> 0':s 308.48/291.59 +' :: 0':s -> 0':s -> 0':s 308.48/291.59 - :: 0':s -> 0':s -> 0':s 308.48/291.59 *' :: 0':s -> 0':s -> 0':s 308.48/291.59 f :: 0':s -> f 308.48/291.59 hole_0':s1_0 :: 0':s 308.48/291.59 hole_f2_0 :: f 308.48/291.59 gen_0':s3_0 :: Nat -> 0':s 308.48/291.59 308.48/291.59 308.48/291.59 Lemmas: 308.48/291.59 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 308.48/291.59 max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) 308.48/291.59 +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) 308.48/291.59 -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) 308.48/291.59 308.48/291.59 308.48/291.59 Generator Equations: 308.48/291.59 gen_0':s3_0(0) <=> 0' 308.48/291.59 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.59 308.48/291.59 308.48/291.59 The following defined symbols remain to be analysed: 308.48/291.59 *', f 308.48/291.59 308.48/291.59 They will be analysed ascendingly in the following order: 308.48/291.59 *' < f 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (22) LowerBoundPropagationProof (FINISHED) 308.48/291.59 Propagated lower bound. 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (23) 308.48/291.59 BOUNDS(n^2, INF) 308.48/291.59 308.48/291.59 ---------------------------------------- 308.48/291.59 308.48/291.59 (24) 308.48/291.59 Obligation: 308.48/291.59 TRS: 308.48/291.59 Rules: 308.48/291.59 min(0', y) -> 0' 308.48/291.59 min(x, 0') -> 0' 308.48/291.59 min(s(x), s(y)) -> s(min(x, y)) 308.48/291.59 max(0', y) -> y 308.48/291.59 max(x, 0') -> x 308.48/291.59 max(s(x), s(y)) -> s(max(x, y)) 308.48/291.59 +'(0', y) -> y 308.48/291.59 +'(s(x), y) -> s(+'(x, y)) 308.48/291.59 -(x, 0') -> x 308.48/291.59 -(s(x), s(y)) -> -(x, y) 308.48/291.59 *'(x, 0') -> 0' 308.48/291.59 *'(x, s(y)) -> +'(x, *'(x, y)) 308.48/291.59 f(s(x)) -> f(-(max(*'(s(x), s(x)), +'(s(x), s(s(s(0'))))), max(s(*'(s(x), s(x))), +'(s(x), s(s(s(s(0')))))))) 308.48/291.59 308.48/291.59 Types: 308.48/291.59 min :: 0':s -> 0':s -> 0':s 308.48/291.59 0' :: 0':s 308.48/291.59 s :: 0':s -> 0':s 308.48/291.59 max :: 0':s -> 0':s -> 0':s 308.48/291.59 +' :: 0':s -> 0':s -> 0':s 308.48/291.59 - :: 0':s -> 0':s -> 0':s 308.48/291.59 *' :: 0':s -> 0':s -> 0':s 308.48/291.59 f :: 0':s -> f 308.48/291.59 hole_0':s1_0 :: 0':s 308.48/291.59 hole_f2_0 :: f 308.48/291.59 gen_0':s3_0 :: Nat -> 0':s 308.48/291.59 308.48/291.59 308.48/291.59 Lemmas: 308.48/291.59 min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(n5_0), rt in Omega(1 + n5_0) 308.48/291.59 max(gen_0':s3_0(n315_0), gen_0':s3_0(n315_0)) -> gen_0':s3_0(n315_0), rt in Omega(1 + n315_0) 308.48/291.59 +'(gen_0':s3_0(n709_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n709_0, b)), rt in Omega(1 + n709_0) 308.48/291.59 -(gen_0':s3_0(n1306_0), gen_0':s3_0(n1306_0)) -> gen_0':s3_0(0), rt in Omega(1 + n1306_0) 308.48/291.59 *'(gen_0':s3_0(a), gen_0':s3_0(n1598_0)) -> gen_0':s3_0(*(n1598_0, a)), rt in Omega(1 + a*n1598_0 + n1598_0) 308.48/291.59 308.48/291.59 308.48/291.59 Generator Equations: 308.48/291.59 gen_0':s3_0(0) <=> 0' 308.48/291.59 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 308.48/291.59 308.48/291.59 308.48/291.59 The following defined symbols remain to be analysed: 308.48/291.59 f 308.48/291.62 EOF