991.51/291.57 WORST_CASE(Omega(n^1), O(n^3)) 991.57/291.60 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 991.57/291.60 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 991.57/291.60 991.57/291.60 991.57/291.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). 991.57/291.60 991.57/291.60 (0) CpxTRS 991.57/291.60 (1) RcToIrcProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (2) CpxTRS 991.57/291.60 (3) RelTrsToWeightedTrsProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (4) CpxWeightedTrs 991.57/291.60 (5) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (6) CpxTypedWeightedTrs 991.57/291.60 (7) CompletionProof [UPPER BOUND(ID), 0 ms] 991.57/291.60 (8) CpxTypedWeightedCompleteTrs 991.57/291.60 (9) NarrowingProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (10) CpxTypedWeightedCompleteTrs 991.57/291.60 (11) CpxTypedWeightedTrsToRntsProof [UPPER BOUND(ID), 6 ms] 991.57/291.60 (12) CpxRNTS 991.57/291.60 (13) SimplificationProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (14) CpxRNTS 991.57/291.60 (15) CpxRntsAnalysisOrderProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (16) CpxRNTS 991.57/291.60 (17) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 991.57/291.60 (18) CpxRNTS 991.57/291.60 (19) IntTrsBoundProof [UPPER BOUND(ID), 507 ms] 991.57/291.60 (20) CpxRNTS 991.57/291.60 (21) IntTrsBoundProof [UPPER BOUND(ID), 179 ms] 991.57/291.60 (22) CpxRNTS 991.57/291.60 (23) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 991.57/291.60 (24) CpxRNTS 991.57/291.60 (25) IntTrsBoundProof [UPPER BOUND(ID), 841 ms] 991.57/291.60 (26) CpxRNTS 991.57/291.60 (27) IntTrsBoundProof [UPPER BOUND(ID), 342 ms] 991.57/291.60 (28) CpxRNTS 991.57/291.60 (29) ResultPropagationProof [UPPER BOUND(ID), 0 ms] 991.57/291.60 (30) CpxRNTS 991.57/291.60 (31) IntTrsBoundProof [UPPER BOUND(ID), 352 ms] 991.57/291.60 (32) CpxRNTS 991.57/291.60 (33) IntTrsBoundProof [UPPER BOUND(ID), 5 ms] 991.57/291.60 (34) CpxRNTS 991.57/291.60 (35) FinalProof [FINISHED, 0 ms] 991.57/291.60 (36) BOUNDS(1, n^3) 991.57/291.60 (37) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (38) CpxTRS 991.57/291.60 (39) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 991.57/291.60 (40) typed CpxTrs 991.57/291.60 (41) OrderProof [LOWER BOUND(ID), 0 ms] 991.57/291.60 (42) typed CpxTrs 991.57/291.60 (43) RewriteLemmaProof [LOWER BOUND(ID), 240 ms] 991.57/291.60 (44) BEST 991.57/291.60 (45) proven lower bound 991.57/291.60 (46) LowerBoundPropagationProof [FINISHED, 0 ms] 991.57/291.60 (47) BOUNDS(n^1, INF) 991.57/291.60 (48) typed CpxTrs 991.57/291.60 991.57/291.60 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (0) 991.57/291.60 Obligation: 991.57/291.60 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^3). 991.57/291.60 991.57/291.60 991.57/291.60 The TRS R consists of the following rules: 991.57/291.60 991.57/291.60 minus(x, x) -> 0 991.57/291.60 minus(s(x), s(y)) -> minus(x, y) 991.57/291.60 minus(0, x) -> 0 991.57/291.60 minus(x, 0) -> x 991.57/291.60 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) 991.57/291.60 div(0, s(y)) -> 0 991.57/291.60 f(x, 0, b) -> x 991.57/291.60 f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) 991.57/291.60 991.57/291.60 S is empty. 991.57/291.60 Rewrite Strategy: FULL 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (1) RcToIrcProof (BOTH BOUNDS(ID, ID)) 991.57/291.60 Converted rc-obligation to irc-obligation. 991.57/291.60 991.57/291.60 The duplicating contexts are: 991.57/291.60 div(s(x), s([])) 991.57/291.60 f(x, s(y), []) 991.57/291.60 991.57/291.60 991.57/291.60 The defined contexts are: 991.57/291.60 div([], x1) 991.57/291.60 f(x0, [], x2) 991.57/291.60 div([], s(x1)) 991.57/291.60 minus([], x1) 991.57/291.60 minus(s([]), s(0)) 991.57/291.60 991.57/291.60 991.57/291.60 [] just represents basic- or constructor-terms in the following defined contexts: 991.57/291.60 f(x0, [], x2) 991.57/291.60 div([], s(x1)) 991.57/291.60 991.57/291.60 991.57/291.60 As the TRS is an overlay system and the defined contexts and the duplicating contexts don't overlap, we have rc = irc. 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (2) 991.57/291.60 Obligation: 991.57/291.60 The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^3). 991.57/291.60 991.57/291.60 991.57/291.60 The TRS R consists of the following rules: 991.57/291.60 991.57/291.60 minus(x, x) -> 0 991.57/291.60 minus(s(x), s(y)) -> minus(x, y) 991.57/291.60 minus(0, x) -> 0 991.57/291.60 minus(x, 0) -> x 991.57/291.60 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) 991.57/291.60 div(0, s(y)) -> 0 991.57/291.60 f(x, 0, b) -> x 991.57/291.60 f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) 991.57/291.60 991.57/291.60 S is empty. 991.57/291.60 Rewrite Strategy: INNERMOST 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (3) RelTrsToWeightedTrsProof (BOTH BOUNDS(ID, ID)) 991.57/291.60 Transformed relative TRS to weighted TRS 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (4) 991.57/291.60 Obligation: 991.57/291.60 The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^3). 991.57/291.60 991.57/291.60 991.57/291.60 The TRS R consists of the following rules: 991.57/291.60 991.57/291.60 minus(x, x) -> 0 [1] 991.57/291.60 minus(s(x), s(y)) -> minus(x, y) [1] 991.57/291.60 minus(0, x) -> 0 [1] 991.57/291.60 minus(x, 0) -> x [1] 991.57/291.60 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] 991.57/291.60 div(0, s(y)) -> 0 [1] 991.57/291.60 f(x, 0, b) -> x [1] 991.57/291.60 f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] 991.57/291.60 991.57/291.60 Rewrite Strategy: INNERMOST 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (5) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 991.57/291.60 Infered types. 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (6) 991.57/291.60 Obligation: 991.57/291.60 Runtime Complexity Weighted TRS with Types. 991.57/291.60 The TRS R consists of the following rules: 991.57/291.60 991.57/291.60 minus(x, x) -> 0 [1] 991.57/291.60 minus(s(x), s(y)) -> minus(x, y) [1] 991.57/291.60 minus(0, x) -> 0 [1] 991.57/291.60 minus(x, 0) -> x [1] 991.57/291.60 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] 991.57/291.60 div(0, s(y)) -> 0 [1] 991.57/291.60 f(x, 0, b) -> x [1] 991.57/291.60 f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] 991.57/291.60 991.57/291.60 The TRS has the following type information: 991.57/291.60 minus :: 0:s -> 0:s -> 0:s 991.57/291.60 0 :: 0:s 991.57/291.60 s :: 0:s -> 0:s 991.57/291.60 div :: 0:s -> 0:s -> 0:s 991.57/291.60 f :: 0:s -> 0:s -> 0:s -> 0:s 991.57/291.60 991.57/291.60 Rewrite Strategy: INNERMOST 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (7) CompletionProof (UPPER BOUND(ID)) 991.57/291.60 The transformation into a RNTS is sound, since: 991.57/291.60 991.57/291.60 (a) The obligation is a constructor system where every type has a constant constructor, 991.57/291.60 991.57/291.60 (b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols: 991.57/291.60 none 991.57/291.60 991.57/291.60 (c) The following functions are completely defined: 991.57/291.60 991.57/291.60 f_3 991.57/291.60 minus_2 991.57/291.60 div_2 991.57/291.60 991.57/291.60 Due to the following rules being added: 991.57/291.60 991.57/291.60 div(v0, v1) -> 0 [0] 991.57/291.60 991.57/291.60 And the following fresh constants: none 991.57/291.60 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (8) 991.57/291.60 Obligation: 991.57/291.60 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 991.57/291.60 991.57/291.60 Runtime Complexity Weighted TRS with Types. 991.57/291.60 The TRS R consists of the following rules: 991.57/291.60 991.57/291.60 minus(x, x) -> 0 [1] 991.57/291.60 minus(s(x), s(y)) -> minus(x, y) [1] 991.57/291.60 minus(0, x) -> 0 [1] 991.57/291.60 minus(x, 0) -> x [1] 991.57/291.60 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) [1] 991.57/291.60 div(0, s(y)) -> 0 [1] 991.57/291.60 f(x, 0, b) -> x [1] 991.57/291.60 f(x, s(y), b) -> div(f(x, minus(s(y), s(0)), b), b) [1] 991.57/291.60 div(v0, v1) -> 0 [0] 991.57/291.60 991.57/291.60 The TRS has the following type information: 991.57/291.60 minus :: 0:s -> 0:s -> 0:s 991.57/291.60 0 :: 0:s 991.57/291.60 s :: 0:s -> 0:s 991.57/291.60 div :: 0:s -> 0:s -> 0:s 991.57/291.60 f :: 0:s -> 0:s -> 0:s -> 0:s 991.57/291.60 991.57/291.60 Rewrite Strategy: INNERMOST 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (9) NarrowingProof (BOTH BOUNDS(ID, ID)) 991.57/291.60 Narrowed the inner basic terms of all right-hand sides by a single narrowing step. 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (10) 991.57/291.60 Obligation: 991.57/291.60 Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is: 991.57/291.60 991.57/291.60 Runtime Complexity Weighted TRS with Types. 991.57/291.60 The TRS R consists of the following rules: 991.57/291.60 991.57/291.60 minus(x, x) -> 0 [1] 991.57/291.60 minus(s(x), s(y)) -> minus(x, y) [1] 991.57/291.60 minus(0, x) -> 0 [1] 991.57/291.60 minus(x, 0) -> x [1] 991.57/291.60 div(s(x), s(x)) -> s(div(0, s(x))) [2] 991.57/291.60 div(s(s(x')), s(s(y'))) -> s(div(minus(x', y'), s(s(y')))) [2] 991.57/291.60 div(s(0), s(y)) -> s(div(0, s(y))) [2] 991.57/291.60 div(s(x), s(0)) -> s(div(x, s(0))) [2] 991.57/291.60 div(0, s(y)) -> 0 [1] 991.57/291.60 f(x, 0, b) -> x [1] 991.57/291.60 f(x, s(0), b) -> div(f(x, 0, b), b) [2] 991.57/291.60 f(x, s(y), b) -> div(f(x, minus(y, 0), b), b) [2] 991.57/291.60 div(v0, v1) -> 0 [0] 991.57/291.60 991.57/291.60 The TRS has the following type information: 991.57/291.60 minus :: 0:s -> 0:s -> 0:s 991.57/291.60 0 :: 0:s 991.57/291.60 s :: 0:s -> 0:s 991.57/291.60 div :: 0:s -> 0:s -> 0:s 991.57/291.60 f :: 0:s -> 0:s -> 0:s -> 0:s 991.57/291.60 991.57/291.60 Rewrite Strategy: INNERMOST 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (11) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID)) 991.57/291.60 Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction. 991.57/291.60 The constant constructors are abstracted as follows: 991.57/291.60 991.57/291.60 0 => 0 991.57/291.60 991.57/291.60 ---------------------------------------- 991.57/291.60 991.57/291.60 (12) 991.57/291.60 Obligation: 991.57/291.60 Complexity RNTS consisting of the following rules: 991.57/291.60 991.57/291.60 div(z, z') -{ 1 }-> 0 :|: z' = 1 + y, y >= 0, z = 0 991.57/291.60 div(z, z') -{ 0 }-> 0 :|: v0 >= 0, v1 >= 0, z = v0, z' = v1 991.57/291.60 div(z, z') -{ 2 }-> 1 + div(x, 1 + 0) :|: x >= 0, z' = 1 + 0, z = 1 + x 991.57/291.60 div(z, z') -{ 2 }-> 1 + div(minus(x', y'), 1 + (1 + y')) :|: z' = 1 + (1 + y'), x' >= 0, y' >= 0, z = 1 + (1 + x') 991.57/291.60 div(z, z') -{ 2 }-> 1 + div(0, 1 + x) :|: z' = 1 + x, x >= 0, z = 1 + x 991.57/291.60 div(z, z') -{ 2 }-> 1 + div(0, 1 + y) :|: z' = 1 + y, z = 1 + 0, y >= 0 991.57/291.60 f(z, z', z'') -{ 1 }-> x :|: b >= 0, z'' = b, x >= 0, z = x, z' = 0 991.57/291.60 f(z, z', z'') -{ 2 }-> div(f(x, minus(y, 0), b), b) :|: z' = 1 + y, b >= 0, z'' = b, x >= 0, y >= 0, z = x 991.57/291.60 f(z, z', z'') -{ 2 }-> div(f(x, 0, b), b) :|: b >= 0, z'' = b, x >= 0, z' = 1 + 0, z = x 991.57/291.61 minus(z, z') -{ 1 }-> x :|: x >= 0, z = x, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> minus(x, y) :|: z' = 1 + y, x >= 0, y >= 0, z = 1 + x 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = x 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' = x, x >= 0, z = 0 991.57/291.61 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (13) SimplificationProof (BOTH BOUNDS(ID, ID)) 991.57/291.61 Simplified the RNTS by moving equalities from the constraints into the right-hand sides. 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (14) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (15) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID)) 991.57/291.61 Found the following analysis order by SCC decomposition: 991.57/291.61 991.57/291.61 { minus } 991.57/291.61 { div } 991.57/291.61 { f } 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (16) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {minus}, {div}, {f} 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (17) ResultPropagationProof (UPPER BOUND(ID)) 991.57/291.61 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (18) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {minus}, {div}, {f} 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (19) IntTrsBoundProof (UPPER BOUND(ID)) 991.57/291.61 991.57/291.61 Computed SIZE bound using KoAT for: minus 991.57/291.61 after applying outer abstraction to obtain an ITS, 991.57/291.61 resulting in: O(n^1) with polynomial bound: z 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (20) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {minus}, {div}, {f} 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: ?, size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (21) IntTrsBoundProof (UPPER BOUND(ID)) 991.57/291.61 991.57/291.61 Computed RUNTIME bound using KoAT for: minus 991.57/291.61 after applying outer abstraction to obtain an ITS, 991.57/291.61 resulting in: O(n^1) with polynomial bound: 3 + z' 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (22) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(minus(z - 2, z' - 2), 1 + (1 + (z' - 2))) :|: z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, minus(z' - 1, 0), z''), z'') :|: z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> minus(z - 1, z' - 1) :|: z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {div}, {f} 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (23) ResultPropagationProof (UPPER BOUND(ID)) 991.57/291.61 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (24) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 3 + z' }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {div}, {f} 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (25) IntTrsBoundProof (UPPER BOUND(ID)) 991.57/291.61 991.57/291.61 Computed SIZE bound using KoAT for: div 991.57/291.61 after applying outer abstraction to obtain an ITS, 991.57/291.61 resulting in: O(n^1) with polynomial bound: z 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (26) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 3 + z' }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {div}, {f} 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] 991.57/291.61 div: runtime: ?, size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (27) IntTrsBoundProof (UPPER BOUND(ID)) 991.57/291.61 991.57/291.61 Computed RUNTIME bound using KoAT for: div 991.57/291.61 after applying outer abstraction to obtain an ITS, 991.57/291.61 resulting in: O(n^2) with polynomial bound: 1 + 9*z + z*z' 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (28) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 3 + z' }-> 1 + div(s', 1 + (1 + (z' - 2))) :|: s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(0, 1 + (z' - 1)) :|: z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ 2 }-> 1 + div(z - 1, 1 + 0) :|: z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {f} 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] 991.57/291.61 div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (29) ResultPropagationProof (UPPER BOUND(ID)) 991.57/291.61 Applied inner abstraction using the recently inferred runtime/size bounds where possible. 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (30) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 4 + 9*s' + s'*z' + z' }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ -7 + 10*z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {f} 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] 991.57/291.61 div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (31) IntTrsBoundProof (UPPER BOUND(ID)) 991.57/291.61 991.57/291.61 Computed SIZE bound using CoFloCo for: f 991.57/291.61 after applying outer abstraction to obtain an ITS, 991.57/291.61 resulting in: O(n^1) with polynomial bound: z 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (32) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 4 + 9*s' + s'*z' + z' }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ -7 + 10*z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: {f} 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] 991.57/291.61 div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] 991.57/291.61 f: runtime: ?, size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (33) IntTrsBoundProof (UPPER BOUND(ID)) 991.57/291.61 991.57/291.61 Computed RUNTIME bound using KoAT for: f 991.57/291.61 after applying outer abstraction to obtain an ITS, 991.57/291.61 resulting in: O(n^3) with polynomial bound: 1 + 18*z*z' + 2*z*z'*z'' + 9*z' 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (34) 991.57/291.61 Obligation: 991.57/291.61 Complexity RNTS consisting of the following rules: 991.57/291.61 991.57/291.61 div(z, z') -{ 1 }-> 0 :|: z' - 1 >= 0, z = 0 991.57/291.61 div(z, z') -{ 0 }-> 0 :|: z >= 0, z' >= 0 991.57/291.61 div(z, z') -{ 3 }-> 1 + s1 :|: s1 >= 0, s1 <= 0, z' - 1 >= 0, z = 1 + (z' - 1) 991.57/291.61 div(z, z') -{ 4 + 9*s' + s'*z' + z' }-> 1 + s2 :|: s2 >= 0, s2 <= s', s' >= 0, s' <= z - 2, z - 2 >= 0, z' - 2 >= 0 991.57/291.61 div(z, z') -{ 3 }-> 1 + s3 :|: s3 >= 0, s3 <= 0, z = 1 + 0, z' - 1 >= 0 991.57/291.61 div(z, z') -{ -7 + 10*z }-> 1 + s4 :|: s4 >= 0, s4 <= z - 1, z - 1 >= 0, z' = 1 + 0 991.57/291.61 f(z, z', z'') -{ 1 }-> z :|: z'' >= 0, z >= 0, z' = 0 991.57/291.61 f(z, z', z'') -{ 5 }-> div(f(z, s'', z''), z'') :|: s'' >= 0, s'' <= z' - 1, z'' >= 0, z >= 0, z' - 1 >= 0 991.57/291.61 f(z, z', z'') -{ 2 }-> div(f(z, 0, z''), z'') :|: z'' >= 0, z >= 0, z' = 1 + 0 991.57/291.61 minus(z, z') -{ 3 + z' }-> s :|: s >= 0, s <= z - 1, z - 1 >= 0, z' - 1 >= 0 991.57/291.61 minus(z, z') -{ 1 }-> z :|: z >= 0, z' = 0 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = z' 991.57/291.61 minus(z, z') -{ 1 }-> 0 :|: z' >= 0, z = 0 991.57/291.61 991.57/291.61 Function symbols to be analyzed: 991.57/291.61 Previous analysis results are: 991.57/291.61 minus: runtime: O(n^1) [3 + z'], size: O(n^1) [z] 991.57/291.61 div: runtime: O(n^2) [1 + 9*z + z*z'], size: O(n^1) [z] 991.57/291.61 f: runtime: O(n^3) [1 + 18*z*z' + 2*z*z'*z'' + 9*z'], size: O(n^1) [z] 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (35) FinalProof (FINISHED) 991.57/291.61 Computed overall runtime complexity 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (36) 991.57/291.61 BOUNDS(1, n^3) 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (37) RenamingProof (BOTH BOUNDS(ID, ID)) 991.57/291.61 Renamed function symbols to avoid clashes with predefined symbol. 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (38) 991.57/291.61 Obligation: 991.57/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 991.57/291.61 991.57/291.61 991.57/291.61 The TRS R consists of the following rules: 991.57/291.61 991.57/291.61 minus(x, x) -> 0' 991.57/291.61 minus(s(x), s(y)) -> minus(x, y) 991.57/291.61 minus(0', x) -> 0' 991.57/291.61 minus(x, 0') -> x 991.57/291.61 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) 991.57/291.61 div(0', s(y)) -> 0' 991.57/291.61 f(x, 0', b) -> x 991.57/291.61 f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) 991.57/291.61 991.57/291.61 S is empty. 991.57/291.61 Rewrite Strategy: FULL 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (39) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 991.57/291.61 Infered types. 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (40) 991.57/291.61 Obligation: 991.57/291.61 TRS: 991.57/291.61 Rules: 991.57/291.61 minus(x, x) -> 0' 991.57/291.61 minus(s(x), s(y)) -> minus(x, y) 991.57/291.61 minus(0', x) -> 0' 991.57/291.61 minus(x, 0') -> x 991.57/291.61 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) 991.57/291.61 div(0', s(y)) -> 0' 991.57/291.61 f(x, 0', b) -> x 991.57/291.61 f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) 991.57/291.61 991.57/291.61 Types: 991.57/291.61 minus :: 0':s -> 0':s -> 0':s 991.57/291.61 0' :: 0':s 991.57/291.61 s :: 0':s -> 0':s 991.57/291.61 div :: 0':s -> 0':s -> 0':s 991.57/291.61 f :: 0':s -> 0':s -> 0':s -> 0':s 991.57/291.61 hole_0':s1_0 :: 0':s 991.57/291.61 gen_0':s2_0 :: Nat -> 0':s 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (41) OrderProof (LOWER BOUND(ID)) 991.57/291.61 Heuristically decided to analyse the following defined symbols: 991.57/291.61 minus, div, f 991.57/291.61 991.57/291.61 They will be analysed ascendingly in the following order: 991.57/291.61 minus < div 991.57/291.61 minus < f 991.57/291.61 div < f 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (42) 991.57/291.61 Obligation: 991.57/291.61 TRS: 991.57/291.61 Rules: 991.57/291.61 minus(x, x) -> 0' 991.57/291.61 minus(s(x), s(y)) -> minus(x, y) 991.57/291.61 minus(0', x) -> 0' 991.57/291.61 minus(x, 0') -> x 991.57/291.61 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) 991.57/291.61 div(0', s(y)) -> 0' 991.57/291.61 f(x, 0', b) -> x 991.57/291.61 f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) 991.57/291.61 991.57/291.61 Types: 991.57/291.61 minus :: 0':s -> 0':s -> 0':s 991.57/291.61 0' :: 0':s 991.57/291.61 s :: 0':s -> 0':s 991.57/291.61 div :: 0':s -> 0':s -> 0':s 991.57/291.61 f :: 0':s -> 0':s -> 0':s -> 0':s 991.57/291.61 hole_0':s1_0 :: 0':s 991.57/291.61 gen_0':s2_0 :: Nat -> 0':s 991.57/291.61 991.57/291.61 991.57/291.61 Generator Equations: 991.57/291.61 gen_0':s2_0(0) <=> 0' 991.57/291.61 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 991.57/291.61 991.57/291.61 991.57/291.61 The following defined symbols remain to be analysed: 991.57/291.61 minus, div, f 991.57/291.61 991.57/291.61 They will be analysed ascendingly in the following order: 991.57/291.61 minus < div 991.57/291.61 minus < f 991.57/291.61 div < f 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (43) RewriteLemmaProof (LOWER BOUND(ID)) 991.57/291.61 Proved the following rewrite lemma: 991.57/291.61 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) 991.57/291.61 991.57/291.61 Induction Base: 991.57/291.61 minus(gen_0':s2_0(0), gen_0':s2_0(0)) ->_R^Omega(1) 991.57/291.61 0' 991.57/291.61 991.57/291.61 Induction Step: 991.57/291.61 minus(gen_0':s2_0(+(n4_0, 1)), gen_0':s2_0(+(n4_0, 1))) ->_R^Omega(1) 991.57/291.61 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) ->_IH 991.57/291.61 gen_0':s2_0(0) 991.57/291.61 991.57/291.61 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (44) 991.57/291.61 Complex Obligation (BEST) 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (45) 991.57/291.61 Obligation: 991.57/291.61 Proved the lower bound n^1 for the following obligation: 991.57/291.61 991.57/291.61 TRS: 991.57/291.61 Rules: 991.57/291.61 minus(x, x) -> 0' 991.57/291.61 minus(s(x), s(y)) -> minus(x, y) 991.57/291.61 minus(0', x) -> 0' 991.57/291.61 minus(x, 0') -> x 991.57/291.61 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) 991.57/291.61 div(0', s(y)) -> 0' 991.57/291.61 f(x, 0', b) -> x 991.57/291.61 f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) 991.57/291.61 991.57/291.61 Types: 991.57/291.61 minus :: 0':s -> 0':s -> 0':s 991.57/291.61 0' :: 0':s 991.57/291.61 s :: 0':s -> 0':s 991.57/291.61 div :: 0':s -> 0':s -> 0':s 991.57/291.61 f :: 0':s -> 0':s -> 0':s -> 0':s 991.57/291.61 hole_0':s1_0 :: 0':s 991.57/291.61 gen_0':s2_0 :: Nat -> 0':s 991.57/291.61 991.57/291.61 991.57/291.61 Generator Equations: 991.57/291.61 gen_0':s2_0(0) <=> 0' 991.57/291.61 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 991.57/291.61 991.57/291.61 991.57/291.61 The following defined symbols remain to be analysed: 991.57/291.61 minus, div, f 991.57/291.61 991.57/291.61 They will be analysed ascendingly in the following order: 991.57/291.61 minus < div 991.57/291.61 minus < f 991.57/291.61 div < f 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (46) LowerBoundPropagationProof (FINISHED) 991.57/291.61 Propagated lower bound. 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (47) 991.57/291.61 BOUNDS(n^1, INF) 991.57/291.61 991.57/291.61 ---------------------------------------- 991.57/291.61 991.57/291.61 (48) 991.57/291.61 Obligation: 991.57/291.61 TRS: 991.57/291.61 Rules: 991.57/291.61 minus(x, x) -> 0' 991.57/291.61 minus(s(x), s(y)) -> minus(x, y) 991.57/291.61 minus(0', x) -> 0' 991.57/291.61 minus(x, 0') -> x 991.57/291.61 div(s(x), s(y)) -> s(div(minus(x, y), s(y))) 991.57/291.61 div(0', s(y)) -> 0' 991.57/291.61 f(x, 0', b) -> x 991.57/291.61 f(x, s(y), b) -> div(f(x, minus(s(y), s(0')), b), b) 991.57/291.61 991.57/291.61 Types: 991.57/291.61 minus :: 0':s -> 0':s -> 0':s 991.57/291.61 0' :: 0':s 991.57/291.61 s :: 0':s -> 0':s 991.57/291.61 div :: 0':s -> 0':s -> 0':s 991.57/291.61 f :: 0':s -> 0':s -> 0':s -> 0':s 991.57/291.61 hole_0':s1_0 :: 0':s 991.57/291.61 gen_0':s2_0 :: Nat -> 0':s 991.57/291.61 991.57/291.61 991.57/291.61 Lemmas: 991.57/291.61 minus(gen_0':s2_0(n4_0), gen_0':s2_0(n4_0)) -> gen_0':s2_0(0), rt in Omega(1 + n4_0) 991.57/291.61 991.57/291.61 991.57/291.61 Generator Equations: 991.57/291.61 gen_0':s2_0(0) <=> 0' 991.57/291.61 gen_0':s2_0(+(x, 1)) <=> s(gen_0':s2_0(x)) 991.57/291.61 991.57/291.61 991.57/291.61 The following defined symbols remain to be analysed: 991.57/291.61 div, f 991.57/291.61 991.57/291.61 They will be analysed ascendingly in the following order: 991.57/291.61 div < f 991.81/291.70 EOF