308.07/291.54 WORST_CASE(Omega(n^1), ?) 308.07/291.55 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 308.07/291.55 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 308.07/291.55 308.07/291.55 308.07/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.07/291.55 308.07/291.55 (0) CpxTRS 308.07/291.55 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 308.07/291.55 (2) CpxTRS 308.07/291.55 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 308.07/291.55 (4) typed CpxTrs 308.07/291.55 (5) OrderProof [LOWER BOUND(ID), 0 ms] 308.07/291.55 (6) typed CpxTrs 308.07/291.55 (7) RewriteLemmaProof [LOWER BOUND(ID), 301 ms] 308.07/291.55 (8) BEST 308.07/291.55 (9) proven lower bound 308.07/291.55 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 308.07/291.55 (11) BOUNDS(n^1, INF) 308.07/291.55 (12) typed CpxTrs 308.07/291.55 (13) RewriteLemmaProof [LOWER BOUND(ID), 72 ms] 308.07/291.55 (14) typed CpxTrs 308.07/291.55 308.07/291.55 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (0) 308.07/291.55 Obligation: 308.07/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.07/291.55 308.07/291.55 308.07/291.55 The TRS R consists of the following rules: 308.07/291.55 308.07/291.55 ge(x, 0) -> true 308.07/291.55 ge(0, s(x)) -> false 308.07/291.55 ge(s(x), s(y)) -> ge(x, y) 308.07/291.55 minus(x, 0) -> x 308.07/291.55 minus(s(x), s(y)) -> minus(x, y) 308.07/291.55 div(x, y) -> ify(ge(y, s(0)), x, y) 308.07/291.55 ify(false, x, y) -> divByZeroError 308.07/291.55 ify(true, x, y) -> if(ge(x, y), x, y) 308.07/291.55 if(false, x, y) -> 0 308.07/291.55 if(true, x, y) -> s(div(minus(x, y), y)) 308.07/291.55 308.07/291.55 S is empty. 308.07/291.55 Rewrite Strategy: FULL 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 308.07/291.55 Renamed function symbols to avoid clashes with predefined symbol. 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (2) 308.07/291.55 Obligation: 308.07/291.55 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 308.07/291.55 308.07/291.55 308.07/291.55 The TRS R consists of the following rules: 308.07/291.55 308.07/291.55 ge(x, 0') -> true 308.07/291.55 ge(0', s(x)) -> false 308.07/291.55 ge(s(x), s(y)) -> ge(x, y) 308.07/291.55 minus(x, 0') -> x 308.07/291.55 minus(s(x), s(y)) -> minus(x, y) 308.07/291.55 div(x, y) -> ify(ge(y, s(0')), x, y) 308.07/291.55 ify(false, x, y) -> divByZeroError 308.07/291.55 ify(true, x, y) -> if(ge(x, y), x, y) 308.07/291.55 if(false, x, y) -> 0' 308.07/291.55 if(true, x, y) -> s(div(minus(x, y), y)) 308.07/291.55 308.07/291.55 S is empty. 308.07/291.55 Rewrite Strategy: FULL 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 308.07/291.55 Infered types. 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (4) 308.07/291.55 Obligation: 308.07/291.55 TRS: 308.07/291.55 Rules: 308.07/291.55 ge(x, 0') -> true 308.07/291.55 ge(0', s(x)) -> false 308.07/291.55 ge(s(x), s(y)) -> ge(x, y) 308.07/291.55 minus(x, 0') -> x 308.07/291.55 minus(s(x), s(y)) -> minus(x, y) 308.07/291.55 div(x, y) -> ify(ge(y, s(0')), x, y) 308.07/291.55 ify(false, x, y) -> divByZeroError 308.07/291.55 ify(true, x, y) -> if(ge(x, y), x, y) 308.07/291.55 if(false, x, y) -> 0' 308.07/291.55 if(true, x, y) -> s(div(minus(x, y), y)) 308.07/291.55 308.07/291.55 Types: 308.07/291.55 ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 308.07/291.55 0' :: 0':s:divByZeroError 308.07/291.55 true :: true:false 308.07/291.55 s :: 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 false :: true:false 308.07/291.55 minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 divByZeroError :: 0':s:divByZeroError 308.07/291.55 if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 hole_true:false1_0 :: true:false 308.07/291.55 hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError 308.07/291.55 gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError 308.07/291.55 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (5) OrderProof (LOWER BOUND(ID)) 308.07/291.55 Heuristically decided to analyse the following defined symbols: 308.07/291.55 ge, minus, div 308.07/291.55 308.07/291.55 They will be analysed ascendingly in the following order: 308.07/291.55 ge < div 308.07/291.55 minus < div 308.07/291.55 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (6) 308.07/291.55 Obligation: 308.07/291.55 TRS: 308.07/291.55 Rules: 308.07/291.55 ge(x, 0') -> true 308.07/291.55 ge(0', s(x)) -> false 308.07/291.55 ge(s(x), s(y)) -> ge(x, y) 308.07/291.55 minus(x, 0') -> x 308.07/291.55 minus(s(x), s(y)) -> minus(x, y) 308.07/291.55 div(x, y) -> ify(ge(y, s(0')), x, y) 308.07/291.55 ify(false, x, y) -> divByZeroError 308.07/291.55 ify(true, x, y) -> if(ge(x, y), x, y) 308.07/291.55 if(false, x, y) -> 0' 308.07/291.55 if(true, x, y) -> s(div(minus(x, y), y)) 308.07/291.55 308.07/291.55 Types: 308.07/291.55 ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 308.07/291.55 0' :: 0':s:divByZeroError 308.07/291.55 true :: true:false 308.07/291.55 s :: 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 false :: true:false 308.07/291.55 minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 divByZeroError :: 0':s:divByZeroError 308.07/291.55 if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 hole_true:false1_0 :: true:false 308.07/291.55 hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError 308.07/291.55 gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError 308.07/291.55 308.07/291.55 308.07/291.55 Generator Equations: 308.07/291.55 gen_0':s:divByZeroError3_0(0) <=> 0' 308.07/291.55 gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) 308.07/291.55 308.07/291.55 308.07/291.55 The following defined symbols remain to be analysed: 308.07/291.55 ge, minus, div 308.07/291.55 308.07/291.55 They will be analysed ascendingly in the following order: 308.07/291.55 ge < div 308.07/291.55 minus < div 308.07/291.55 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (7) RewriteLemmaProof (LOWER BOUND(ID)) 308.07/291.55 Proved the following rewrite lemma: 308.07/291.55 ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 308.07/291.55 308.07/291.55 Induction Base: 308.07/291.55 ge(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) 308.07/291.55 true 308.07/291.55 308.07/291.55 Induction Step: 308.07/291.55 ge(gen_0':s:divByZeroError3_0(+(n5_0, 1)), gen_0':s:divByZeroError3_0(+(n5_0, 1))) ->_R^Omega(1) 308.07/291.55 ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) ->_IH 308.07/291.55 true 308.07/291.55 308.07/291.55 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (8) 308.07/291.55 Complex Obligation (BEST) 308.07/291.55 308.07/291.55 ---------------------------------------- 308.07/291.55 308.07/291.55 (9) 308.07/291.55 Obligation: 308.07/291.55 Proved the lower bound n^1 for the following obligation: 308.07/291.55 308.07/291.55 TRS: 308.07/291.55 Rules: 308.07/291.55 ge(x, 0') -> true 308.07/291.55 ge(0', s(x)) -> false 308.07/291.55 ge(s(x), s(y)) -> ge(x, y) 308.07/291.55 minus(x, 0') -> x 308.07/291.55 minus(s(x), s(y)) -> minus(x, y) 308.07/291.55 div(x, y) -> ify(ge(y, s(0')), x, y) 308.07/291.55 ify(false, x, y) -> divByZeroError 308.07/291.55 ify(true, x, y) -> if(ge(x, y), x, y) 308.07/291.55 if(false, x, y) -> 0' 308.07/291.55 if(true, x, y) -> s(div(minus(x, y), y)) 308.07/291.55 308.07/291.55 Types: 308.07/291.55 ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 308.07/291.55 0' :: 0':s:divByZeroError 308.07/291.55 true :: true:false 308.07/291.55 s :: 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 false :: true:false 308.07/291.55 minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.55 ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 divByZeroError :: 0':s:divByZeroError 308.07/291.56 if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 hole_true:false1_0 :: true:false 308.07/291.56 hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError 308.07/291.56 gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError 308.07/291.56 308.07/291.56 308.07/291.56 Generator Equations: 308.07/291.56 gen_0':s:divByZeroError3_0(0) <=> 0' 308.07/291.56 gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) 308.07/291.56 308.07/291.56 308.07/291.56 The following defined symbols remain to be analysed: 308.07/291.56 ge, minus, div 308.07/291.56 308.07/291.56 They will be analysed ascendingly in the following order: 308.07/291.56 ge < div 308.07/291.56 minus < div 308.07/291.56 308.07/291.56 ---------------------------------------- 308.07/291.56 308.07/291.56 (10) LowerBoundPropagationProof (FINISHED) 308.07/291.56 Propagated lower bound. 308.07/291.56 ---------------------------------------- 308.07/291.56 308.07/291.56 (11) 308.07/291.56 BOUNDS(n^1, INF) 308.07/291.56 308.07/291.56 ---------------------------------------- 308.07/291.56 308.07/291.56 (12) 308.07/291.56 Obligation: 308.07/291.56 TRS: 308.07/291.56 Rules: 308.07/291.56 ge(x, 0') -> true 308.07/291.56 ge(0', s(x)) -> false 308.07/291.56 ge(s(x), s(y)) -> ge(x, y) 308.07/291.56 minus(x, 0') -> x 308.07/291.56 minus(s(x), s(y)) -> minus(x, y) 308.07/291.56 div(x, y) -> ify(ge(y, s(0')), x, y) 308.07/291.56 ify(false, x, y) -> divByZeroError 308.07/291.56 ify(true, x, y) -> if(ge(x, y), x, y) 308.07/291.56 if(false, x, y) -> 0' 308.07/291.56 if(true, x, y) -> s(div(minus(x, y), y)) 308.07/291.56 308.07/291.56 Types: 308.07/291.56 ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 308.07/291.56 0' :: 0':s:divByZeroError 308.07/291.56 true :: true:false 308.07/291.56 s :: 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 false :: true:false 308.07/291.56 minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 divByZeroError :: 0':s:divByZeroError 308.07/291.56 if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 hole_true:false1_0 :: true:false 308.07/291.56 hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError 308.07/291.56 gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError 308.07/291.56 308.07/291.56 308.07/291.56 Lemmas: 308.07/291.56 ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 308.07/291.56 308.07/291.56 308.07/291.56 Generator Equations: 308.07/291.56 gen_0':s:divByZeroError3_0(0) <=> 0' 308.07/291.56 gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) 308.07/291.56 308.07/291.56 308.07/291.56 The following defined symbols remain to be analysed: 308.07/291.56 minus, div 308.07/291.56 308.07/291.56 They will be analysed ascendingly in the following order: 308.07/291.56 minus < div 308.07/291.56 308.07/291.56 ---------------------------------------- 308.07/291.56 308.07/291.56 (13) RewriteLemmaProof (LOWER BOUND(ID)) 308.07/291.56 Proved the following rewrite lemma: 308.07/291.56 minus(gen_0':s:divByZeroError3_0(n251_0), gen_0':s:divByZeroError3_0(n251_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n251_0) 308.07/291.56 308.07/291.56 Induction Base: 308.07/291.56 minus(gen_0':s:divByZeroError3_0(0), gen_0':s:divByZeroError3_0(0)) ->_R^Omega(1) 308.07/291.56 gen_0':s:divByZeroError3_0(0) 308.07/291.56 308.07/291.56 Induction Step: 308.07/291.56 minus(gen_0':s:divByZeroError3_0(+(n251_0, 1)), gen_0':s:divByZeroError3_0(+(n251_0, 1))) ->_R^Omega(1) 308.07/291.56 minus(gen_0':s:divByZeroError3_0(n251_0), gen_0':s:divByZeroError3_0(n251_0)) ->_IH 308.07/291.56 gen_0':s:divByZeroError3_0(0) 308.07/291.56 308.07/291.56 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 308.07/291.56 ---------------------------------------- 308.07/291.56 308.07/291.56 (14) 308.07/291.56 Obligation: 308.07/291.56 TRS: 308.07/291.56 Rules: 308.07/291.56 ge(x, 0') -> true 308.07/291.56 ge(0', s(x)) -> false 308.07/291.56 ge(s(x), s(y)) -> ge(x, y) 308.07/291.56 minus(x, 0') -> x 308.07/291.56 minus(s(x), s(y)) -> minus(x, y) 308.07/291.56 div(x, y) -> ify(ge(y, s(0')), x, y) 308.07/291.56 ify(false, x, y) -> divByZeroError 308.07/291.56 ify(true, x, y) -> if(ge(x, y), x, y) 308.07/291.56 if(false, x, y) -> 0' 308.07/291.56 if(true, x, y) -> s(div(minus(x, y), y)) 308.07/291.56 308.07/291.56 Types: 308.07/291.56 ge :: 0':s:divByZeroError -> 0':s:divByZeroError -> true:false 308.07/291.56 0' :: 0':s:divByZeroError 308.07/291.56 true :: true:false 308.07/291.56 s :: 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 false :: true:false 308.07/291.56 minus :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 div :: 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 ify :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 divByZeroError :: 0':s:divByZeroError 308.07/291.56 if :: true:false -> 0':s:divByZeroError -> 0':s:divByZeroError -> 0':s:divByZeroError 308.07/291.56 hole_true:false1_0 :: true:false 308.07/291.56 hole_0':s:divByZeroError2_0 :: 0':s:divByZeroError 308.07/291.56 gen_0':s:divByZeroError3_0 :: Nat -> 0':s:divByZeroError 308.07/291.56 308.07/291.56 308.07/291.56 Lemmas: 308.07/291.56 ge(gen_0':s:divByZeroError3_0(n5_0), gen_0':s:divByZeroError3_0(n5_0)) -> true, rt in Omega(1 + n5_0) 308.07/291.56 minus(gen_0':s:divByZeroError3_0(n251_0), gen_0':s:divByZeroError3_0(n251_0)) -> gen_0':s:divByZeroError3_0(0), rt in Omega(1 + n251_0) 308.07/291.56 308.07/291.56 308.07/291.56 Generator Equations: 308.07/291.56 gen_0':s:divByZeroError3_0(0) <=> 0' 308.07/291.56 gen_0':s:divByZeroError3_0(+(x, 1)) <=> s(gen_0':s:divByZeroError3_0(x)) 308.07/291.56 308.07/291.56 308.07/291.56 The following defined symbols remain to be analysed: 308.07/291.56 div 308.16/291.59 EOF