314.84/291.47 WORST_CASE(Omega(n^2), ?) 314.84/291.48 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 314.84/291.48 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 314.84/291.48 314.84/291.48 314.84/291.48 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 314.84/291.48 314.84/291.48 (0) CpxTRS 314.84/291.48 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 314.84/291.48 (2) CpxTRS 314.84/291.48 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 314.84/291.48 (4) typed CpxTrs 314.84/291.48 (5) OrderProof [LOWER BOUND(ID), 0 ms] 314.84/291.48 (6) typed CpxTrs 314.84/291.48 (7) RewriteLemmaProof [LOWER BOUND(ID), 278 ms] 314.84/291.48 (8) BEST 314.84/291.48 (9) proven lower bound 314.84/291.48 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 314.84/291.48 (11) BOUNDS(n^1, INF) 314.84/291.48 (12) typed CpxTrs 314.84/291.48 (13) RewriteLemmaProof [LOWER BOUND(ID), 62 ms] 314.84/291.48 (14) typed CpxTrs 314.84/291.48 (15) RewriteLemmaProof [LOWER BOUND(ID), 87 ms] 314.84/291.48 (16) BEST 314.84/291.48 (17) proven lower bound 314.84/291.48 (18) LowerBoundPropagationProof [FINISHED, 0 ms] 314.84/291.48 (19) BOUNDS(n^2, INF) 314.84/291.48 (20) typed CpxTrs 314.84/291.48 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (0) 314.84/291.48 Obligation: 314.84/291.48 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 314.84/291.48 314.84/291.48 314.84/291.48 The TRS R consists of the following rules: 314.84/291.48 314.84/291.48 -(x, 0) -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +(0, y) -> y 314.84/291.48 +(s(x), y) -> s(+(x, y)) 314.84/291.48 *(x, 0) -> 0 314.84/291.48 *(x, s(y)) -> +(x, *(x, y)) 314.84/291.48 f(s(x)) -> f(-(*(s(s(0)), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 S is empty. 314.84/291.48 Rewrite Strategy: FULL 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 314.84/291.48 Renamed function symbols to avoid clashes with predefined symbol. 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (2) 314.84/291.48 Obligation: 314.84/291.48 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^2, INF). 314.84/291.48 314.84/291.48 314.84/291.48 The TRS R consists of the following rules: 314.84/291.48 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 S is empty. 314.84/291.48 Rewrite Strategy: FULL 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 314.84/291.48 Infered types. 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (4) 314.84/291.48 Obligation: 314.84/291.48 TRS: 314.84/291.48 Rules: 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 Types: 314.84/291.48 - :: 0':s -> 0':s -> 0':s 314.84/291.48 0' :: 0':s 314.84/291.48 s :: 0':s -> 0':s 314.84/291.48 +' :: 0':s -> 0':s -> 0':s 314.84/291.48 *' :: 0':s -> 0':s -> 0':s 314.84/291.48 f :: 0':s -> f 314.84/291.48 hole_0':s1_0 :: 0':s 314.84/291.48 hole_f2_0 :: f 314.84/291.48 gen_0':s3_0 :: Nat -> 0':s 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (5) OrderProof (LOWER BOUND(ID)) 314.84/291.48 Heuristically decided to analyse the following defined symbols: 314.84/291.48 -, +', *', f 314.84/291.48 314.84/291.48 They will be analysed ascendingly in the following order: 314.84/291.48 - < f 314.84/291.48 +' < *' 314.84/291.48 *' < f 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (6) 314.84/291.48 Obligation: 314.84/291.48 TRS: 314.84/291.48 Rules: 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 Types: 314.84/291.48 - :: 0':s -> 0':s -> 0':s 314.84/291.48 0' :: 0':s 314.84/291.48 s :: 0':s -> 0':s 314.84/291.48 +' :: 0':s -> 0':s -> 0':s 314.84/291.48 *' :: 0':s -> 0':s -> 0':s 314.84/291.48 f :: 0':s -> f 314.84/291.48 hole_0':s1_0 :: 0':s 314.84/291.48 hole_f2_0 :: f 314.84/291.48 gen_0':s3_0 :: Nat -> 0':s 314.84/291.48 314.84/291.48 314.84/291.48 Generator Equations: 314.84/291.48 gen_0':s3_0(0) <=> 0' 314.84/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.84/291.48 314.84/291.48 314.84/291.48 The following defined symbols remain to be analysed: 314.84/291.48 -, +', *', f 314.84/291.48 314.84/291.48 They will be analysed ascendingly in the following order: 314.84/291.48 - < f 314.84/291.48 +' < *' 314.84/291.48 *' < f 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (7) RewriteLemmaProof (LOWER BOUND(ID)) 314.84/291.48 Proved the following rewrite lemma: 314.84/291.48 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 314.84/291.48 314.84/291.48 Induction Base: 314.84/291.48 -(gen_0':s3_0(0), gen_0':s3_0(0)) ->_R^Omega(1) 314.84/291.48 gen_0':s3_0(0) 314.84/291.48 314.84/291.48 Induction Step: 314.84/291.48 -(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) ->_R^Omega(1) 314.84/291.48 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) ->_IH 314.84/291.48 gen_0':s3_0(0) 314.84/291.48 314.84/291.48 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (8) 314.84/291.48 Complex Obligation (BEST) 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (9) 314.84/291.48 Obligation: 314.84/291.48 Proved the lower bound n^1 for the following obligation: 314.84/291.48 314.84/291.48 TRS: 314.84/291.48 Rules: 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 Types: 314.84/291.48 - :: 0':s -> 0':s -> 0':s 314.84/291.48 0' :: 0':s 314.84/291.48 s :: 0':s -> 0':s 314.84/291.48 +' :: 0':s -> 0':s -> 0':s 314.84/291.48 *' :: 0':s -> 0':s -> 0':s 314.84/291.48 f :: 0':s -> f 314.84/291.48 hole_0':s1_0 :: 0':s 314.84/291.48 hole_f2_0 :: f 314.84/291.48 gen_0':s3_0 :: Nat -> 0':s 314.84/291.48 314.84/291.48 314.84/291.48 Generator Equations: 314.84/291.48 gen_0':s3_0(0) <=> 0' 314.84/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.84/291.48 314.84/291.48 314.84/291.48 The following defined symbols remain to be analysed: 314.84/291.48 -, +', *', f 314.84/291.48 314.84/291.48 They will be analysed ascendingly in the following order: 314.84/291.48 - < f 314.84/291.48 +' < *' 314.84/291.48 *' < f 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (10) LowerBoundPropagationProof (FINISHED) 314.84/291.48 Propagated lower bound. 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (11) 314.84/291.48 BOUNDS(n^1, INF) 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (12) 314.84/291.48 Obligation: 314.84/291.48 TRS: 314.84/291.48 Rules: 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 Types: 314.84/291.48 - :: 0':s -> 0':s -> 0':s 314.84/291.48 0' :: 0':s 314.84/291.48 s :: 0':s -> 0':s 314.84/291.48 +' :: 0':s -> 0':s -> 0':s 314.84/291.48 *' :: 0':s -> 0':s -> 0':s 314.84/291.48 f :: 0':s -> f 314.84/291.48 hole_0':s1_0 :: 0':s 314.84/291.48 hole_f2_0 :: f 314.84/291.48 gen_0':s3_0 :: Nat -> 0':s 314.84/291.48 314.84/291.48 314.84/291.48 Lemmas: 314.84/291.48 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 314.84/291.48 314.84/291.48 314.84/291.48 Generator Equations: 314.84/291.48 gen_0':s3_0(0) <=> 0' 314.84/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.84/291.48 314.84/291.48 314.84/291.48 The following defined symbols remain to be analysed: 314.84/291.48 +', *', f 314.84/291.48 314.84/291.48 They will be analysed ascendingly in the following order: 314.84/291.48 +' < *' 314.84/291.48 *' < f 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (13) RewriteLemmaProof (LOWER BOUND(ID)) 314.84/291.48 Proved the following rewrite lemma: 314.84/291.48 +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) 314.84/291.48 314.84/291.48 Induction Base: 314.84/291.48 +'(gen_0':s3_0(0), gen_0':s3_0(b)) ->_R^Omega(1) 314.84/291.48 gen_0':s3_0(b) 314.84/291.48 314.84/291.48 Induction Step: 314.84/291.48 +'(gen_0':s3_0(+(n225_0, 1)), gen_0':s3_0(b)) ->_R^Omega(1) 314.84/291.48 s(+'(gen_0':s3_0(n225_0), gen_0':s3_0(b))) ->_IH 314.84/291.48 s(gen_0':s3_0(+(b, c226_0))) 314.84/291.48 314.84/291.48 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (14) 314.84/291.48 Obligation: 314.84/291.48 TRS: 314.84/291.48 Rules: 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 Types: 314.84/291.48 - :: 0':s -> 0':s -> 0':s 314.84/291.48 0' :: 0':s 314.84/291.48 s :: 0':s -> 0':s 314.84/291.48 +' :: 0':s -> 0':s -> 0':s 314.84/291.48 *' :: 0':s -> 0':s -> 0':s 314.84/291.48 f :: 0':s -> f 314.84/291.48 hole_0':s1_0 :: 0':s 314.84/291.48 hole_f2_0 :: f 314.84/291.48 gen_0':s3_0 :: Nat -> 0':s 314.84/291.48 314.84/291.48 314.84/291.48 Lemmas: 314.84/291.48 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 314.84/291.48 +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) 314.84/291.48 314.84/291.48 314.84/291.48 Generator Equations: 314.84/291.48 gen_0':s3_0(0) <=> 0' 314.84/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.84/291.48 314.84/291.48 314.84/291.48 The following defined symbols remain to be analysed: 314.84/291.48 *', f 314.84/291.48 314.84/291.48 They will be analysed ascendingly in the following order: 314.84/291.48 *' < f 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (15) RewriteLemmaProof (LOWER BOUND(ID)) 314.84/291.48 Proved the following rewrite lemma: 314.84/291.48 *'(gen_0':s3_0(a), gen_0':s3_0(n696_0)) -> gen_0':s3_0(*(n696_0, a)), rt in Omega(1 + a*n696_0 + n696_0) 314.84/291.48 314.84/291.48 Induction Base: 314.84/291.48 *'(gen_0':s3_0(a), gen_0':s3_0(0)) ->_R^Omega(1) 314.84/291.48 0' 314.84/291.48 314.84/291.48 Induction Step: 314.84/291.48 *'(gen_0':s3_0(a), gen_0':s3_0(+(n696_0, 1))) ->_R^Omega(1) 314.84/291.48 +'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n696_0))) ->_IH 314.84/291.48 +'(gen_0':s3_0(a), gen_0':s3_0(*(c697_0, a))) ->_L^Omega(1 + a) 314.84/291.48 gen_0':s3_0(+(a, *(n696_0, a))) 314.84/291.48 314.84/291.48 We have rt in Omega(n^2) and sz in O(n). Thus, we have irc_R in Omega(n^2). 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (16) 314.84/291.48 Complex Obligation (BEST) 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (17) 314.84/291.48 Obligation: 314.84/291.48 Proved the lower bound n^2 for the following obligation: 314.84/291.48 314.84/291.48 TRS: 314.84/291.48 Rules: 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 Types: 314.84/291.48 - :: 0':s -> 0':s -> 0':s 314.84/291.48 0' :: 0':s 314.84/291.48 s :: 0':s -> 0':s 314.84/291.48 +' :: 0':s -> 0':s -> 0':s 314.84/291.48 *' :: 0':s -> 0':s -> 0':s 314.84/291.48 f :: 0':s -> f 314.84/291.48 hole_0':s1_0 :: 0':s 314.84/291.48 hole_f2_0 :: f 314.84/291.48 gen_0':s3_0 :: Nat -> 0':s 314.84/291.48 314.84/291.48 314.84/291.48 Lemmas: 314.84/291.48 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 314.84/291.48 +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) 314.84/291.48 314.84/291.48 314.84/291.48 Generator Equations: 314.84/291.48 gen_0':s3_0(0) <=> 0' 314.84/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.84/291.48 314.84/291.48 314.84/291.48 The following defined symbols remain to be analysed: 314.84/291.48 *', f 314.84/291.48 314.84/291.48 They will be analysed ascendingly in the following order: 314.84/291.48 *' < f 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (18) LowerBoundPropagationProof (FINISHED) 314.84/291.48 Propagated lower bound. 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (19) 314.84/291.48 BOUNDS(n^2, INF) 314.84/291.48 314.84/291.48 ---------------------------------------- 314.84/291.48 314.84/291.48 (20) 314.84/291.48 Obligation: 314.84/291.48 TRS: 314.84/291.48 Rules: 314.84/291.48 -(x, 0') -> x 314.84/291.48 -(s(x), s(y)) -> -(x, y) 314.84/291.48 +'(0', y) -> y 314.84/291.48 +'(s(x), y) -> s(+'(x, y)) 314.84/291.48 *'(x, 0') -> 0' 314.84/291.48 *'(x, s(y)) -> +'(x, *'(x, y)) 314.84/291.48 f(s(x)) -> f(-(*'(s(s(0')), s(x)), s(s(x)))) 314.84/291.48 314.84/291.48 Types: 314.84/291.48 - :: 0':s -> 0':s -> 0':s 314.84/291.48 0' :: 0':s 314.84/291.48 s :: 0':s -> 0':s 314.84/291.48 +' :: 0':s -> 0':s -> 0':s 314.84/291.48 *' :: 0':s -> 0':s -> 0':s 314.84/291.48 f :: 0':s -> f 314.84/291.48 hole_0':s1_0 :: 0':s 314.84/291.48 hole_f2_0 :: f 314.84/291.48 gen_0':s3_0 :: Nat -> 0':s 314.84/291.48 314.84/291.48 314.84/291.48 Lemmas: 314.84/291.48 -(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) -> gen_0':s3_0(0), rt in Omega(1 + n5_0) 314.84/291.48 +'(gen_0':s3_0(n225_0), gen_0':s3_0(b)) -> gen_0':s3_0(+(n225_0, b)), rt in Omega(1 + n225_0) 314.84/291.48 *'(gen_0':s3_0(a), gen_0':s3_0(n696_0)) -> gen_0':s3_0(*(n696_0, a)), rt in Omega(1 + a*n696_0 + n696_0) 314.84/291.48 314.84/291.48 314.84/291.48 Generator Equations: 314.84/291.48 gen_0':s3_0(0) <=> 0' 314.84/291.48 gen_0':s3_0(+(x, 1)) <=> s(gen_0':s3_0(x)) 314.84/291.48 314.84/291.48 314.84/291.48 The following defined symbols remain to be analysed: 314.84/291.48 f 315.14/291.62 EOF