312.92/291.57 WORST_CASE(Omega(n^1), ?) 312.92/291.58 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 312.92/291.58 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 312.92/291.58 312.92/291.58 312.92/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 312.92/291.58 312.92/291.58 (0) CpxTRS 312.92/291.58 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 312.92/291.58 (2) TRS for Loop Detection 312.92/291.58 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 312.92/291.58 (4) BEST 312.92/291.58 (5) proven lower bound 312.92/291.58 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 312.92/291.58 (7) BOUNDS(n^1, INF) 312.92/291.58 (8) TRS for Loop Detection 312.92/291.58 312.92/291.58 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (0) 312.92/291.58 Obligation: 312.92/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 312.92/291.58 312.92/291.58 312.92/291.58 The TRS R consists of the following rules: 312.92/291.58 312.92/291.58 min(x, 0) -> 0 312.92/291.58 min(0, y) -> 0 312.92/291.58 min(s(x), s(y)) -> s(min(x, y)) 312.92/291.58 max(x, 0) -> x 312.92/291.58 max(0, y) -> y 312.92/291.58 max(s(x), s(y)) -> s(max(x, y)) 312.92/291.58 -(x, 0) -> x 312.92/291.58 -(s(x), s(y)) -> -(x, y) 312.92/291.58 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 312.92/291.58 312.92/291.58 S is empty. 312.92/291.58 Rewrite Strategy: FULL 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 312.92/291.58 Transformed a relative TRS into a decreasing-loop problem. 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (2) 312.92/291.58 Obligation: 312.92/291.58 Analyzing the following TRS for decreasing loops: 312.92/291.58 312.92/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 312.92/291.58 312.92/291.58 312.92/291.58 The TRS R consists of the following rules: 312.92/291.58 312.92/291.58 min(x, 0) -> 0 312.92/291.58 min(0, y) -> 0 312.92/291.58 min(s(x), s(y)) -> s(min(x, y)) 312.92/291.58 max(x, 0) -> x 312.92/291.58 max(0, y) -> y 312.92/291.58 max(s(x), s(y)) -> s(max(x, y)) 312.92/291.58 -(x, 0) -> x 312.92/291.58 -(s(x), s(y)) -> -(x, y) 312.92/291.58 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 312.92/291.58 312.92/291.58 S is empty. 312.92/291.58 Rewrite Strategy: FULL 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (3) DecreasingLoopProof (LOWER BOUND(ID)) 312.92/291.58 The following loop(s) give(s) rise to the lower bound Omega(n^1): 312.92/291.58 312.92/291.58 The rewrite sequence 312.92/291.58 312.92/291.58 -(s(x), s(y)) ->^+ -(x, y) 312.92/291.58 312.92/291.58 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 312.92/291.58 312.92/291.58 The pumping substitution is [x / s(x), y / s(y)]. 312.92/291.58 312.92/291.58 The result substitution is [ ]. 312.92/291.58 312.92/291.58 312.92/291.58 312.92/291.58 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (4) 312.92/291.58 Complex Obligation (BEST) 312.92/291.58 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (5) 312.92/291.58 Obligation: 312.92/291.58 Proved the lower bound n^1 for the following obligation: 312.92/291.58 312.92/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 312.92/291.58 312.92/291.58 312.92/291.58 The TRS R consists of the following rules: 312.92/291.58 312.92/291.58 min(x, 0) -> 0 312.92/291.58 min(0, y) -> 0 312.92/291.58 min(s(x), s(y)) -> s(min(x, y)) 312.92/291.58 max(x, 0) -> x 312.92/291.58 max(0, y) -> y 312.92/291.58 max(s(x), s(y)) -> s(max(x, y)) 312.92/291.58 -(x, 0) -> x 312.92/291.58 -(s(x), s(y)) -> -(x, y) 312.92/291.58 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 312.92/291.58 312.92/291.58 S is empty. 312.92/291.58 Rewrite Strategy: FULL 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (6) LowerBoundPropagationProof (FINISHED) 312.92/291.58 Propagated lower bound. 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (7) 312.92/291.58 BOUNDS(n^1, INF) 312.92/291.58 312.92/291.58 ---------------------------------------- 312.92/291.58 312.92/291.58 (8) 312.92/291.58 Obligation: 312.92/291.58 Analyzing the following TRS for decreasing loops: 312.92/291.58 312.92/291.58 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 312.92/291.58 312.92/291.58 312.92/291.58 The TRS R consists of the following rules: 312.92/291.58 312.92/291.58 min(x, 0) -> 0 312.92/291.58 min(0, y) -> 0 312.92/291.58 min(s(x), s(y)) -> s(min(x, y)) 312.92/291.58 max(x, 0) -> x 312.92/291.58 max(0, y) -> y 312.92/291.58 max(s(x), s(y)) -> s(max(x, y)) 312.92/291.58 -(x, 0) -> x 312.92/291.58 -(s(x), s(y)) -> -(x, y) 312.92/291.58 gcd(s(x), s(y)) -> gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y))) 312.92/291.58 312.92/291.58 S is empty. 312.92/291.58 Rewrite Strategy: FULL 312.92/291.61 EOF