3.56/1.69 WORST_CASE(NON_POLY, ?) 3.56/1.70 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.56/1.70 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.56/1.70 3.56/1.70 3.56/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.56/1.70 3.56/1.70 (0) CpxTRS 3.56/1.70 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.56/1.70 (2) TRS for Loop Detection 3.56/1.70 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.56/1.70 (4) BEST 3.56/1.70 (5) proven lower bound 3.56/1.70 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.56/1.70 (7) BOUNDS(n^1, INF) 3.56/1.70 (8) TRS for Loop Detection 3.56/1.70 (9) DecreasingLoopProof [FINISHED, 35 ms] 3.56/1.70 (10) BOUNDS(EXP, INF) 3.56/1.70 3.56/1.70 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (0) 3.56/1.70 Obligation: 3.56/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.56/1.70 3.56/1.70 3.56/1.70 The TRS R consists of the following rules: 3.56/1.70 3.56/1.70 a__a -> a__c 3.56/1.70 a__b -> a__c 3.56/1.70 a__c -> e 3.56/1.70 a__k -> l 3.56/1.70 a__d -> m 3.56/1.70 a__a -> a__d 3.56/1.70 a__b -> a__d 3.56/1.70 a__c -> l 3.56/1.70 a__k -> m 3.56/1.70 a__A -> a__h(a__f(a__a), a__f(a__b)) 3.56/1.70 a__h(X, X) -> a__g(mark(X), mark(X), a__f(a__k)) 3.56/1.70 a__g(d, X, X) -> a__A 3.56/1.70 a__f(X) -> a__z(mark(X), X) 3.56/1.70 a__z(e, X) -> mark(X) 3.56/1.70 mark(A) -> a__A 3.56/1.70 mark(a) -> a__a 3.56/1.70 mark(b) -> a__b 3.56/1.70 mark(c) -> a__c 3.56/1.70 mark(d) -> a__d 3.56/1.70 mark(k) -> a__k 3.56/1.70 mark(z(X1, X2)) -> a__z(mark(X1), X2) 3.56/1.70 mark(f(X)) -> a__f(mark(X)) 3.56/1.70 mark(h(X1, X2)) -> a__h(mark(X1), mark(X2)) 3.56/1.70 mark(g(X1, X2, X3)) -> a__g(mark(X1), mark(X2), mark(X3)) 3.56/1.70 mark(e) -> e 3.56/1.70 mark(l) -> l 3.56/1.70 mark(m) -> m 3.56/1.70 a__A -> A 3.56/1.70 a__a -> a 3.56/1.70 a__b -> b 3.56/1.70 a__c -> c 3.56/1.70 a__d -> d 3.56/1.70 a__k -> k 3.56/1.70 a__z(X1, X2) -> z(X1, X2) 3.56/1.70 a__f(X) -> f(X) 3.56/1.70 a__h(X1, X2) -> h(X1, X2) 3.56/1.70 a__g(X1, X2, X3) -> g(X1, X2, X3) 3.56/1.70 3.56/1.70 S is empty. 3.56/1.70 Rewrite Strategy: FULL 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.56/1.70 Transformed a relative TRS into a decreasing-loop problem. 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (2) 3.56/1.70 Obligation: 3.56/1.70 Analyzing the following TRS for decreasing loops: 3.56/1.70 3.56/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.56/1.70 3.56/1.70 3.56/1.70 The TRS R consists of the following rules: 3.56/1.70 3.56/1.70 a__a -> a__c 3.56/1.70 a__b -> a__c 3.56/1.70 a__c -> e 3.56/1.70 a__k -> l 3.56/1.70 a__d -> m 3.56/1.70 a__a -> a__d 3.56/1.70 a__b -> a__d 3.56/1.70 a__c -> l 3.56/1.70 a__k -> m 3.56/1.70 a__A -> a__h(a__f(a__a), a__f(a__b)) 3.56/1.70 a__h(X, X) -> a__g(mark(X), mark(X), a__f(a__k)) 3.56/1.70 a__g(d, X, X) -> a__A 3.56/1.70 a__f(X) -> a__z(mark(X), X) 3.56/1.70 a__z(e, X) -> mark(X) 3.56/1.70 mark(A) -> a__A 3.56/1.70 mark(a) -> a__a 3.56/1.70 mark(b) -> a__b 3.56/1.70 mark(c) -> a__c 3.56/1.70 mark(d) -> a__d 3.56/1.70 mark(k) -> a__k 3.56/1.70 mark(z(X1, X2)) -> a__z(mark(X1), X2) 3.56/1.70 mark(f(X)) -> a__f(mark(X)) 3.56/1.70 mark(h(X1, X2)) -> a__h(mark(X1), mark(X2)) 3.56/1.70 mark(g(X1, X2, X3)) -> a__g(mark(X1), mark(X2), mark(X3)) 3.56/1.70 mark(e) -> e 3.56/1.70 mark(l) -> l 3.56/1.70 mark(m) -> m 3.56/1.70 a__A -> A 3.56/1.70 a__a -> a 3.56/1.70 a__b -> b 3.56/1.70 a__c -> c 3.56/1.70 a__d -> d 3.56/1.70 a__k -> k 3.56/1.70 a__z(X1, X2) -> z(X1, X2) 3.56/1.70 a__f(X) -> f(X) 3.56/1.70 a__h(X1, X2) -> h(X1, X2) 3.56/1.70 a__g(X1, X2, X3) -> g(X1, X2, X3) 3.56/1.70 3.56/1.70 S is empty. 3.56/1.70 Rewrite Strategy: FULL 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.56/1.70 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.56/1.70 3.56/1.70 The rewrite sequence 3.56/1.70 3.56/1.70 mark(z(X1, X2)) ->^+ a__z(mark(X1), X2) 3.56/1.70 3.56/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.56/1.70 3.56/1.70 The pumping substitution is [X1 / z(X1, X2)]. 3.56/1.70 3.56/1.70 The result substitution is [ ]. 3.56/1.70 3.56/1.70 3.56/1.70 3.56/1.70 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (4) 3.56/1.70 Complex Obligation (BEST) 3.56/1.70 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (5) 3.56/1.70 Obligation: 3.56/1.70 Proved the lower bound n^1 for the following obligation: 3.56/1.70 3.56/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.56/1.70 3.56/1.70 3.56/1.70 The TRS R consists of the following rules: 3.56/1.70 3.56/1.70 a__a -> a__c 3.56/1.70 a__b -> a__c 3.56/1.70 a__c -> e 3.56/1.70 a__k -> l 3.56/1.70 a__d -> m 3.56/1.70 a__a -> a__d 3.56/1.70 a__b -> a__d 3.56/1.70 a__c -> l 3.56/1.70 a__k -> m 3.56/1.70 a__A -> a__h(a__f(a__a), a__f(a__b)) 3.56/1.70 a__h(X, X) -> a__g(mark(X), mark(X), a__f(a__k)) 3.56/1.70 a__g(d, X, X) -> a__A 3.56/1.70 a__f(X) -> a__z(mark(X), X) 3.56/1.70 a__z(e, X) -> mark(X) 3.56/1.70 mark(A) -> a__A 3.56/1.70 mark(a) -> a__a 3.56/1.70 mark(b) -> a__b 3.56/1.70 mark(c) -> a__c 3.56/1.70 mark(d) -> a__d 3.56/1.70 mark(k) -> a__k 3.56/1.70 mark(z(X1, X2)) -> a__z(mark(X1), X2) 3.56/1.70 mark(f(X)) -> a__f(mark(X)) 3.56/1.70 mark(h(X1, X2)) -> a__h(mark(X1), mark(X2)) 3.56/1.70 mark(g(X1, X2, X3)) -> a__g(mark(X1), mark(X2), mark(X3)) 3.56/1.70 mark(e) -> e 3.56/1.70 mark(l) -> l 3.56/1.70 mark(m) -> m 3.56/1.70 a__A -> A 3.56/1.70 a__a -> a 3.56/1.70 a__b -> b 3.56/1.70 a__c -> c 3.56/1.70 a__d -> d 3.56/1.70 a__k -> k 3.56/1.70 a__z(X1, X2) -> z(X1, X2) 3.56/1.70 a__f(X) -> f(X) 3.56/1.70 a__h(X1, X2) -> h(X1, X2) 3.56/1.70 a__g(X1, X2, X3) -> g(X1, X2, X3) 3.56/1.70 3.56/1.70 S is empty. 3.56/1.70 Rewrite Strategy: FULL 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (6) LowerBoundPropagationProof (FINISHED) 3.56/1.70 Propagated lower bound. 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (7) 3.56/1.70 BOUNDS(n^1, INF) 3.56/1.70 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (8) 3.56/1.70 Obligation: 3.56/1.70 Analyzing the following TRS for decreasing loops: 3.56/1.70 3.56/1.70 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.56/1.70 3.56/1.70 3.56/1.70 The TRS R consists of the following rules: 3.56/1.70 3.56/1.70 a__a -> a__c 3.56/1.70 a__b -> a__c 3.56/1.70 a__c -> e 3.56/1.70 a__k -> l 3.56/1.70 a__d -> m 3.56/1.70 a__a -> a__d 3.56/1.70 a__b -> a__d 3.56/1.70 a__c -> l 3.56/1.70 a__k -> m 3.56/1.70 a__A -> a__h(a__f(a__a), a__f(a__b)) 3.56/1.70 a__h(X, X) -> a__g(mark(X), mark(X), a__f(a__k)) 3.56/1.70 a__g(d, X, X) -> a__A 3.56/1.70 a__f(X) -> a__z(mark(X), X) 3.56/1.70 a__z(e, X) -> mark(X) 3.56/1.70 mark(A) -> a__A 3.56/1.70 mark(a) -> a__a 3.56/1.70 mark(b) -> a__b 3.56/1.70 mark(c) -> a__c 3.56/1.70 mark(d) -> a__d 3.56/1.70 mark(k) -> a__k 3.56/1.70 mark(z(X1, X2)) -> a__z(mark(X1), X2) 3.56/1.70 mark(f(X)) -> a__f(mark(X)) 3.56/1.70 mark(h(X1, X2)) -> a__h(mark(X1), mark(X2)) 3.56/1.70 mark(g(X1, X2, X3)) -> a__g(mark(X1), mark(X2), mark(X3)) 3.56/1.70 mark(e) -> e 3.56/1.70 mark(l) -> l 3.56/1.70 mark(m) -> m 3.56/1.70 a__A -> A 3.56/1.70 a__a -> a 3.56/1.70 a__b -> b 3.56/1.70 a__c -> c 3.56/1.70 a__d -> d 3.56/1.70 a__k -> k 3.56/1.70 a__z(X1, X2) -> z(X1, X2) 3.56/1.70 a__f(X) -> f(X) 3.56/1.70 a__h(X1, X2) -> h(X1, X2) 3.56/1.70 a__g(X1, X2, X3) -> g(X1, X2, X3) 3.56/1.70 3.56/1.70 S is empty. 3.56/1.70 Rewrite Strategy: FULL 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (9) DecreasingLoopProof (FINISHED) 3.56/1.70 The following loop(s) give(s) rise to the lower bound EXP: 3.56/1.70 3.56/1.70 The rewrite sequence 3.56/1.70 3.56/1.70 mark(f(X)) ->^+ a__z(mark(mark(X)), mark(X)) 3.56/1.70 3.56/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.56/1.70 3.56/1.70 The pumping substitution is [X / f(X)]. 3.56/1.70 3.56/1.70 The result substitution is [ ]. 3.56/1.70 3.56/1.70 3.56/1.70 3.56/1.70 The rewrite sequence 3.56/1.70 3.56/1.70 mark(f(X)) ->^+ a__z(mark(mark(X)), mark(X)) 3.56/1.70 3.56/1.70 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 3.56/1.70 3.56/1.70 The pumping substitution is [X / f(X)]. 3.56/1.70 3.56/1.70 The result substitution is [ ]. 3.56/1.70 3.56/1.70 3.56/1.70 3.56/1.70 3.56/1.70 ---------------------------------------- 3.56/1.70 3.56/1.70 (10) 3.56/1.70 BOUNDS(EXP, INF) 3.86/1.73 EOF