8.71/3.05 WORST_CASE(Omega(n^1), O(n^1)) 8.71/3.06 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 8.71/3.06 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 8.71/3.06 8.71/3.06 8.71/3.06 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 8.71/3.06 8.71/3.06 (0) CpxTRS 8.71/3.06 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 8.71/3.06 (2) CpxTRS 8.71/3.06 (3) CpxTrsMatchBoundsTAProof [FINISHED, 0 ms] 8.71/3.06 (4) BOUNDS(1, n^1) 8.71/3.06 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 8.71/3.06 (6) TRS for Loop Detection 8.71/3.06 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 8.71/3.06 (8) BEST 8.71/3.06 (9) proven lower bound 8.71/3.06 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 8.71/3.06 (11) BOUNDS(n^1, INF) 8.71/3.06 (12) TRS for Loop Detection 8.71/3.06 8.71/3.06 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (0) 8.71/3.06 Obligation: 8.71/3.06 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 8.71/3.06 8.71/3.06 8.71/3.06 The TRS R consists of the following rules: 8.71/3.06 8.71/3.06 h(f(x), y) -> f(g(x, y)) 8.71/3.06 g(x, y) -> h(x, y) 8.71/3.06 8.71/3.06 S is empty. 8.71/3.06 Rewrite Strategy: FULL 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 8.71/3.06 transformed relative TRS to TRS 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (2) 8.71/3.06 Obligation: 8.71/3.06 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 8.71/3.06 8.71/3.06 8.71/3.06 The TRS R consists of the following rules: 8.71/3.06 8.71/3.06 h(f(x), y) -> f(g(x, y)) 8.71/3.06 g(x, y) -> h(x, y) 8.71/3.06 8.71/3.06 S is empty. 8.71/3.06 Rewrite Strategy: FULL 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (3) CpxTrsMatchBoundsTAProof (FINISHED) 8.71/3.06 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 2. 8.71/3.06 8.71/3.06 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 8.71/3.06 final states : [1, 2] 8.71/3.06 transitions: 8.71/3.06 f0(0) -> 0 8.71/3.06 h0(0, 0) -> 1 8.71/3.06 g0(0, 0) -> 2 8.71/3.06 g1(0, 0) -> 3 8.71/3.06 f1(3) -> 1 8.71/3.06 h1(0, 0) -> 2 8.71/3.06 f1(3) -> 2 8.71/3.06 h2(0, 0) -> 3 8.71/3.06 f1(3) -> 3 8.71/3.06 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (4) 8.71/3.06 BOUNDS(1, n^1) 8.71/3.06 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 8.71/3.06 Transformed a relative TRS into a decreasing-loop problem. 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (6) 8.71/3.06 Obligation: 8.71/3.06 Analyzing the following TRS for decreasing loops: 8.71/3.06 8.71/3.06 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 8.71/3.06 8.71/3.06 8.71/3.06 The TRS R consists of the following rules: 8.71/3.06 8.71/3.06 h(f(x), y) -> f(g(x, y)) 8.71/3.06 g(x, y) -> h(x, y) 8.71/3.06 8.71/3.06 S is empty. 8.71/3.06 Rewrite Strategy: FULL 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (7) DecreasingLoopProof (LOWER BOUND(ID)) 8.71/3.06 The following loop(s) give(s) rise to the lower bound Omega(n^1): 8.71/3.06 8.71/3.06 The rewrite sequence 8.71/3.06 8.71/3.06 h(f(x), y) ->^+ f(h(x, y)) 8.71/3.06 8.71/3.06 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 8.71/3.06 8.71/3.06 The pumping substitution is [x / f(x)]. 8.71/3.06 8.71/3.06 The result substitution is [ ]. 8.71/3.06 8.71/3.06 8.71/3.06 8.71/3.06 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (8) 8.71/3.06 Complex Obligation (BEST) 8.71/3.06 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (9) 8.71/3.06 Obligation: 8.71/3.06 Proved the lower bound n^1 for the following obligation: 8.71/3.06 8.71/3.06 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 8.71/3.06 8.71/3.06 8.71/3.06 The TRS R consists of the following rules: 8.71/3.06 8.71/3.06 h(f(x), y) -> f(g(x, y)) 8.71/3.06 g(x, y) -> h(x, y) 8.71/3.06 8.71/3.06 S is empty. 8.71/3.06 Rewrite Strategy: FULL 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (10) LowerBoundPropagationProof (FINISHED) 8.71/3.06 Propagated lower bound. 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (11) 8.71/3.06 BOUNDS(n^1, INF) 8.71/3.06 8.71/3.06 ---------------------------------------- 8.71/3.06 8.71/3.06 (12) 8.71/3.06 Obligation: 8.71/3.06 Analyzing the following TRS for decreasing loops: 8.71/3.06 8.71/3.06 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 8.71/3.06 8.71/3.06 8.71/3.06 The TRS R consists of the following rules: 8.71/3.06 8.71/3.06 h(f(x), y) -> f(g(x, y)) 8.71/3.06 g(x, y) -> h(x, y) 8.71/3.06 8.71/3.06 S is empty. 8.71/3.06 Rewrite Strategy: FULL 9.04/3.22 EOF