3.16/1.63 WORST_CASE(NON_POLY, ?) 3.16/1.64 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.16/1.64 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.16/1.64 3.16/1.64 3.16/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.16/1.64 3.16/1.64 (0) CpxTRS 3.16/1.64 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.16/1.64 (2) TRS for Loop Detection 3.16/1.64 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.16/1.64 (4) BEST 3.16/1.64 (5) proven lower bound 3.16/1.64 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.16/1.64 (7) BOUNDS(n^1, INF) 3.16/1.64 (8) TRS for Loop Detection 3.16/1.64 (9) DecreasingLoopProof [FINISHED, 0 ms] 3.16/1.64 (10) BOUNDS(EXP, INF) 3.16/1.64 3.16/1.64 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (0) 3.16/1.64 Obligation: 3.16/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.16/1.64 3.16/1.64 3.16/1.64 The TRS R consists of the following rules: 3.16/1.64 3.16/1.64 sort(l) -> st(0, l) 3.16/1.64 st(n, l) -> cond1(member(n, l), n, l) 3.16/1.64 cond1(true, n, l) -> cons(n, st(s(n), l)) 3.16/1.64 cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) 3.16/1.64 cond2(true, n, l) -> nil 3.16/1.64 cond2(false, n, l) -> st(s(n), l) 3.16/1.64 member(n, nil) -> false 3.16/1.64 member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) 3.16/1.64 or(x, true) -> true 3.16/1.64 or(x, false) -> x 3.16/1.64 equal(0, 0) -> true 3.16/1.64 equal(s(x), 0) -> false 3.16/1.64 equal(0, s(y)) -> false 3.16/1.64 equal(s(x), s(y)) -> equal(x, y) 3.16/1.64 gt(0, v) -> false 3.16/1.64 gt(s(u), 0) -> true 3.16/1.64 gt(s(u), s(v)) -> gt(u, v) 3.16/1.64 max(nil) -> 0 3.16/1.64 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) 3.16/1.64 if(true, u, v) -> u 3.16/1.64 if(false, u, v) -> v 3.16/1.64 3.16/1.64 S is empty. 3.16/1.64 Rewrite Strategy: FULL 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.16/1.64 Transformed a relative TRS into a decreasing-loop problem. 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (2) 3.16/1.64 Obligation: 3.16/1.64 Analyzing the following TRS for decreasing loops: 3.16/1.64 3.16/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.16/1.64 3.16/1.64 3.16/1.64 The TRS R consists of the following rules: 3.16/1.64 3.16/1.64 sort(l) -> st(0, l) 3.16/1.64 st(n, l) -> cond1(member(n, l), n, l) 3.16/1.64 cond1(true, n, l) -> cons(n, st(s(n), l)) 3.16/1.64 cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) 3.16/1.64 cond2(true, n, l) -> nil 3.16/1.64 cond2(false, n, l) -> st(s(n), l) 3.16/1.64 member(n, nil) -> false 3.16/1.64 member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) 3.16/1.64 or(x, true) -> true 3.16/1.64 or(x, false) -> x 3.16/1.64 equal(0, 0) -> true 3.16/1.64 equal(s(x), 0) -> false 3.16/1.64 equal(0, s(y)) -> false 3.16/1.64 equal(s(x), s(y)) -> equal(x, y) 3.16/1.64 gt(0, v) -> false 3.16/1.64 gt(s(u), 0) -> true 3.16/1.64 gt(s(u), s(v)) -> gt(u, v) 3.16/1.64 max(nil) -> 0 3.16/1.64 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) 3.16/1.64 if(true, u, v) -> u 3.16/1.64 if(false, u, v) -> v 3.16/1.64 3.16/1.64 S is empty. 3.16/1.64 Rewrite Strategy: FULL 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.16/1.64 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.16/1.64 3.16/1.64 The rewrite sequence 3.16/1.64 3.16/1.64 gt(s(u), s(v)) ->^+ gt(u, v) 3.16/1.64 3.16/1.64 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 3.16/1.64 3.16/1.64 The pumping substitution is [u / s(u), v / s(v)]. 3.16/1.64 3.16/1.64 The result substitution is [ ]. 3.16/1.64 3.16/1.64 3.16/1.64 3.16/1.64 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (4) 3.16/1.64 Complex Obligation (BEST) 3.16/1.64 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (5) 3.16/1.64 Obligation: 3.16/1.64 Proved the lower bound n^1 for the following obligation: 3.16/1.64 3.16/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.16/1.64 3.16/1.64 3.16/1.64 The TRS R consists of the following rules: 3.16/1.64 3.16/1.64 sort(l) -> st(0, l) 3.16/1.64 st(n, l) -> cond1(member(n, l), n, l) 3.16/1.64 cond1(true, n, l) -> cons(n, st(s(n), l)) 3.16/1.64 cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) 3.16/1.64 cond2(true, n, l) -> nil 3.16/1.64 cond2(false, n, l) -> st(s(n), l) 3.16/1.64 member(n, nil) -> false 3.16/1.64 member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) 3.16/1.64 or(x, true) -> true 3.16/1.64 or(x, false) -> x 3.16/1.64 equal(0, 0) -> true 3.16/1.64 equal(s(x), 0) -> false 3.16/1.64 equal(0, s(y)) -> false 3.16/1.64 equal(s(x), s(y)) -> equal(x, y) 3.16/1.64 gt(0, v) -> false 3.16/1.64 gt(s(u), 0) -> true 3.16/1.64 gt(s(u), s(v)) -> gt(u, v) 3.16/1.64 max(nil) -> 0 3.16/1.64 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) 3.16/1.64 if(true, u, v) -> u 3.16/1.64 if(false, u, v) -> v 3.16/1.64 3.16/1.64 S is empty. 3.16/1.64 Rewrite Strategy: FULL 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (6) LowerBoundPropagationProof (FINISHED) 3.16/1.64 Propagated lower bound. 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (7) 3.16/1.64 BOUNDS(n^1, INF) 3.16/1.64 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (8) 3.16/1.64 Obligation: 3.16/1.64 Analyzing the following TRS for decreasing loops: 3.16/1.64 3.16/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.16/1.64 3.16/1.64 3.16/1.64 The TRS R consists of the following rules: 3.16/1.64 3.16/1.64 sort(l) -> st(0, l) 3.16/1.64 st(n, l) -> cond1(member(n, l), n, l) 3.16/1.64 cond1(true, n, l) -> cons(n, st(s(n), l)) 3.16/1.64 cond1(false, n, l) -> cond2(gt(n, max(l)), n, l) 3.16/1.64 cond2(true, n, l) -> nil 3.16/1.64 cond2(false, n, l) -> st(s(n), l) 3.16/1.64 member(n, nil) -> false 3.16/1.64 member(n, cons(m, l)) -> or(equal(n, m), member(n, l)) 3.16/1.64 or(x, true) -> true 3.16/1.64 or(x, false) -> x 3.16/1.64 equal(0, 0) -> true 3.16/1.64 equal(s(x), 0) -> false 3.16/1.64 equal(0, s(y)) -> false 3.16/1.64 equal(s(x), s(y)) -> equal(x, y) 3.16/1.64 gt(0, v) -> false 3.16/1.64 gt(s(u), 0) -> true 3.16/1.64 gt(s(u), s(v)) -> gt(u, v) 3.16/1.64 max(nil) -> 0 3.16/1.64 max(cons(u, l)) -> if(gt(u, max(l)), u, max(l)) 3.16/1.64 if(true, u, v) -> u 3.16/1.64 if(false, u, v) -> v 3.16/1.64 3.16/1.64 S is empty. 3.16/1.64 Rewrite Strategy: FULL 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (9) DecreasingLoopProof (FINISHED) 3.16/1.64 The following loop(s) give(s) rise to the lower bound EXP: 3.16/1.64 3.16/1.64 The rewrite sequence 3.16/1.64 3.16/1.64 max(cons(u, l)) ->^+ if(gt(u, max(l)), u, max(l)) 3.16/1.64 3.16/1.64 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,1]. 3.16/1.64 3.16/1.64 The pumping substitution is [l / cons(u, l)]. 3.16/1.64 3.16/1.64 The result substitution is [ ]. 3.16/1.64 3.16/1.64 3.16/1.64 3.16/1.64 The rewrite sequence 3.16/1.64 3.16/1.64 max(cons(u, l)) ->^+ if(gt(u, max(l)), u, max(l)) 3.16/1.64 3.16/1.64 gives rise to a decreasing loop by considering the right hand sides subterm at position [2]. 3.16/1.64 3.16/1.64 The pumping substitution is [l / cons(u, l)]. 3.16/1.64 3.16/1.64 The result substitution is [ ]. 3.16/1.64 3.16/1.64 3.16/1.64 3.16/1.64 3.16/1.64 ---------------------------------------- 3.16/1.64 3.16/1.64 (10) 3.16/1.64 BOUNDS(EXP, INF) 3.16/1.68 EOF