1149.43/291.55 WORST_CASE(Omega(n^1), ?) 1149.55/291.61 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 1149.55/291.61 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 1149.55/291.61 1149.55/291.61 1149.55/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1149.55/291.61 1149.55/291.61 (0) CpxTRS 1149.55/291.61 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 1149.55/291.61 (2) TRS for Loop Detection 1149.55/291.61 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 1149.55/291.61 (4) BEST 1149.55/291.61 (5) proven lower bound 1149.55/291.61 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 1149.55/291.61 (7) BOUNDS(n^1, INF) 1149.55/291.61 (8) TRS for Loop Detection 1149.55/291.61 1149.55/291.61 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (0) 1149.55/291.61 Obligation: 1149.55/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1149.55/291.61 1149.55/291.61 1149.55/291.61 The TRS R consists of the following rules: 1149.55/291.61 1149.55/291.61 f(s(x1), x2, x3, x4, x5, x6, x7, x8, x9, x10) -> f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, s(x2), x3, x4, x5, x6, x7, x8, x9, x10) -> f(x2, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, s(x3), x4, x5, x6, x7, x8, x9, x10) -> f(x3, x3, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, s(x4), x5, x6, x7, x8, x9, x10) -> f(x4, x4, x4, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, s(x5), x6, x7, x8, x9, x10) -> f(x5, x5, x5, x5, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, s(x6), x7, x8, x9, x10) -> f(x6, x6, x6, x6, x6, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, s(x7), x8, x9, x10) -> f(x7, x7, x7, x7, x7, x7, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, s(x8), x9, x10) -> f(x8, x8, x8, x8, x8, x8, x8, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, s(x9), x10) -> f(x9, x9, x9, x9, x9, x9, x9, x9, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, s(x10)) -> f(x10, x10, x10, x10, x10, x10, x10, x10, x10, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) -> 0 1149.55/291.61 1149.55/291.61 S is empty. 1149.55/291.61 Rewrite Strategy: FULL 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 1149.55/291.61 Transformed a relative TRS into a decreasing-loop problem. 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (2) 1149.55/291.61 Obligation: 1149.55/291.61 Analyzing the following TRS for decreasing loops: 1149.55/291.61 1149.55/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1149.55/291.61 1149.55/291.61 1149.55/291.61 The TRS R consists of the following rules: 1149.55/291.61 1149.55/291.61 f(s(x1), x2, x3, x4, x5, x6, x7, x8, x9, x10) -> f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, s(x2), x3, x4, x5, x6, x7, x8, x9, x10) -> f(x2, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, s(x3), x4, x5, x6, x7, x8, x9, x10) -> f(x3, x3, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, s(x4), x5, x6, x7, x8, x9, x10) -> f(x4, x4, x4, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, s(x5), x6, x7, x8, x9, x10) -> f(x5, x5, x5, x5, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, s(x6), x7, x8, x9, x10) -> f(x6, x6, x6, x6, x6, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, s(x7), x8, x9, x10) -> f(x7, x7, x7, x7, x7, x7, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, s(x8), x9, x10) -> f(x8, x8, x8, x8, x8, x8, x8, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, s(x9), x10) -> f(x9, x9, x9, x9, x9, x9, x9, x9, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, s(x10)) -> f(x10, x10, x10, x10, x10, x10, x10, x10, x10, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) -> 0 1149.55/291.61 1149.55/291.61 S is empty. 1149.55/291.61 Rewrite Strategy: FULL 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (3) DecreasingLoopProof (LOWER BOUND(ID)) 1149.55/291.61 The following loop(s) give(s) rise to the lower bound Omega(n^1): 1149.55/291.61 1149.55/291.61 The rewrite sequence 1149.55/291.61 1149.55/291.61 f(s(x1), x2, x3, x4, x5, x6, x7, x8, x9, x10) ->^+ f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 1149.55/291.61 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 1149.55/291.61 1149.55/291.61 The pumping substitution is [x1 / s(x1)]. 1149.55/291.61 1149.55/291.61 The result substitution is [ ]. 1149.55/291.61 1149.55/291.61 1149.55/291.61 1149.55/291.61 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (4) 1149.55/291.61 Complex Obligation (BEST) 1149.55/291.61 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (5) 1149.55/291.61 Obligation: 1149.55/291.61 Proved the lower bound n^1 for the following obligation: 1149.55/291.61 1149.55/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1149.55/291.61 1149.55/291.61 1149.55/291.61 The TRS R consists of the following rules: 1149.55/291.61 1149.55/291.61 f(s(x1), x2, x3, x4, x5, x6, x7, x8, x9, x10) -> f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, s(x2), x3, x4, x5, x6, x7, x8, x9, x10) -> f(x2, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, s(x3), x4, x5, x6, x7, x8, x9, x10) -> f(x3, x3, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, s(x4), x5, x6, x7, x8, x9, x10) -> f(x4, x4, x4, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, s(x5), x6, x7, x8, x9, x10) -> f(x5, x5, x5, x5, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, s(x6), x7, x8, x9, x10) -> f(x6, x6, x6, x6, x6, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, s(x7), x8, x9, x10) -> f(x7, x7, x7, x7, x7, x7, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, s(x8), x9, x10) -> f(x8, x8, x8, x8, x8, x8, x8, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, s(x9), x10) -> f(x9, x9, x9, x9, x9, x9, x9, x9, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, s(x10)) -> f(x10, x10, x10, x10, x10, x10, x10, x10, x10, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) -> 0 1149.55/291.61 1149.55/291.61 S is empty. 1149.55/291.61 Rewrite Strategy: FULL 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (6) LowerBoundPropagationProof (FINISHED) 1149.55/291.61 Propagated lower bound. 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (7) 1149.55/291.61 BOUNDS(n^1, INF) 1149.55/291.61 1149.55/291.61 ---------------------------------------- 1149.55/291.61 1149.55/291.61 (8) 1149.55/291.61 Obligation: 1149.55/291.61 Analyzing the following TRS for decreasing loops: 1149.55/291.61 1149.55/291.61 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 1149.55/291.61 1149.55/291.61 1149.55/291.61 The TRS R consists of the following rules: 1149.55/291.61 1149.55/291.61 f(s(x1), x2, x3, x4, x5, x6, x7, x8, x9, x10) -> f(x1, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, s(x2), x3, x4, x5, x6, x7, x8, x9, x10) -> f(x2, x2, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, s(x3), x4, x5, x6, x7, x8, x9, x10) -> f(x3, x3, x3, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, s(x4), x5, x6, x7, x8, x9, x10) -> f(x4, x4, x4, x4, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, s(x5), x6, x7, x8, x9, x10) -> f(x5, x5, x5, x5, x5, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, s(x6), x7, x8, x9, x10) -> f(x6, x6, x6, x6, x6, x6, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, s(x7), x8, x9, x10) -> f(x7, x7, x7, x7, x7, x7, x7, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, s(x8), x9, x10) -> f(x8, x8, x8, x8, x8, x8, x8, x8, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, s(x9), x10) -> f(x9, x9, x9, x9, x9, x9, x9, x9, x9, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, s(x10)) -> f(x10, x10, x10, x10, x10, x10, x10, x10, x10, x10) 1149.55/291.61 f(0, 0, 0, 0, 0, 0, 0, 0, 0, 0) -> 0 1149.55/291.61 1149.55/291.61 S is empty. 1149.55/291.61 Rewrite Strategy: FULL 1149.81/291.70 EOF