5.03/2.13 WORST_CASE(NON_POLY, ?) 5.03/2.13 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 5.03/2.13 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.03/2.13 5.03/2.13 5.03/2.13 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 5.03/2.13 5.03/2.13 (0) CpxTRS 5.03/2.13 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 5.03/2.13 (2) TRS for Loop Detection 5.03/2.13 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 5.03/2.13 (4) BEST 5.03/2.13 (5) proven lower bound 5.03/2.13 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 5.03/2.13 (7) BOUNDS(n^1, INF) 5.03/2.13 (8) TRS for Loop Detection 5.03/2.13 (9) InfiniteLowerBoundProof [FINISHED, 145 ms] 5.03/2.13 (10) BOUNDS(INF, INF) 5.03/2.13 5.03/2.13 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (0) 5.03/2.13 Obligation: 5.03/2.13 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 5.03/2.13 5.03/2.13 5.03/2.13 The TRS R consists of the following rules: 5.03/2.13 5.03/2.13 a__zeros -> cons(0, zeros) 5.03/2.13 a__and(tt, X) -> mark(X) 5.03/2.13 a__length(nil) -> 0 5.03/2.13 a__length(cons(N, L)) -> s(a__length(mark(L))) 5.03/2.13 a__take(0, IL) -> nil 5.03/2.13 a__take(s(M), cons(N, IL)) -> cons(mark(N), take(M, IL)) 5.03/2.13 mark(zeros) -> a__zeros 5.03/2.13 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.03/2.13 mark(length(X)) -> a__length(mark(X)) 5.03/2.13 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 5.03/2.13 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.03/2.13 mark(0) -> 0 5.03/2.13 mark(tt) -> tt 5.03/2.13 mark(nil) -> nil 5.03/2.13 mark(s(X)) -> s(mark(X)) 5.03/2.13 a__zeros -> zeros 5.03/2.13 a__and(X1, X2) -> and(X1, X2) 5.03/2.13 a__length(X) -> length(X) 5.03/2.13 a__take(X1, X2) -> take(X1, X2) 5.03/2.13 5.03/2.13 S is empty. 5.03/2.13 Rewrite Strategy: FULL 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 5.03/2.13 Transformed a relative TRS into a decreasing-loop problem. 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (2) 5.03/2.13 Obligation: 5.03/2.13 Analyzing the following TRS for decreasing loops: 5.03/2.13 5.03/2.13 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 5.03/2.13 5.03/2.13 5.03/2.13 The TRS R consists of the following rules: 5.03/2.13 5.03/2.13 a__zeros -> cons(0, zeros) 5.03/2.13 a__and(tt, X) -> mark(X) 5.03/2.13 a__length(nil) -> 0 5.03/2.13 a__length(cons(N, L)) -> s(a__length(mark(L))) 5.03/2.13 a__take(0, IL) -> nil 5.03/2.13 a__take(s(M), cons(N, IL)) -> cons(mark(N), take(M, IL)) 5.03/2.13 mark(zeros) -> a__zeros 5.03/2.13 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.03/2.13 mark(length(X)) -> a__length(mark(X)) 5.03/2.13 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 5.03/2.13 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.03/2.13 mark(0) -> 0 5.03/2.13 mark(tt) -> tt 5.03/2.13 mark(nil) -> nil 5.03/2.13 mark(s(X)) -> s(mark(X)) 5.03/2.13 a__zeros -> zeros 5.03/2.13 a__and(X1, X2) -> and(X1, X2) 5.03/2.13 a__length(X) -> length(X) 5.03/2.13 a__take(X1, X2) -> take(X1, X2) 5.03/2.13 5.03/2.13 S is empty. 5.03/2.13 Rewrite Strategy: FULL 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (3) DecreasingLoopProof (LOWER BOUND(ID)) 5.03/2.13 The following loop(s) give(s) rise to the lower bound Omega(n^1): 5.03/2.13 5.03/2.13 The rewrite sequence 5.03/2.13 5.03/2.13 mark(length(X)) ->^+ a__length(mark(X)) 5.03/2.13 5.03/2.13 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 5.03/2.13 5.03/2.13 The pumping substitution is [X / length(X)]. 5.03/2.13 5.03/2.13 The result substitution is [ ]. 5.03/2.13 5.03/2.13 5.03/2.13 5.03/2.13 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (4) 5.03/2.13 Complex Obligation (BEST) 5.03/2.13 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (5) 5.03/2.13 Obligation: 5.03/2.13 Proved the lower bound n^1 for the following obligation: 5.03/2.13 5.03/2.13 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 5.03/2.13 5.03/2.13 5.03/2.13 The TRS R consists of the following rules: 5.03/2.13 5.03/2.13 a__zeros -> cons(0, zeros) 5.03/2.13 a__and(tt, X) -> mark(X) 5.03/2.13 a__length(nil) -> 0 5.03/2.13 a__length(cons(N, L)) -> s(a__length(mark(L))) 5.03/2.13 a__take(0, IL) -> nil 5.03/2.13 a__take(s(M), cons(N, IL)) -> cons(mark(N), take(M, IL)) 5.03/2.13 mark(zeros) -> a__zeros 5.03/2.13 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.03/2.13 mark(length(X)) -> a__length(mark(X)) 5.03/2.13 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 5.03/2.13 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.03/2.13 mark(0) -> 0 5.03/2.13 mark(tt) -> tt 5.03/2.13 mark(nil) -> nil 5.03/2.13 mark(s(X)) -> s(mark(X)) 5.03/2.13 a__zeros -> zeros 5.03/2.13 a__and(X1, X2) -> and(X1, X2) 5.03/2.13 a__length(X) -> length(X) 5.03/2.13 a__take(X1, X2) -> take(X1, X2) 5.03/2.13 5.03/2.13 S is empty. 5.03/2.13 Rewrite Strategy: FULL 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (6) LowerBoundPropagationProof (FINISHED) 5.03/2.13 Propagated lower bound. 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (7) 5.03/2.13 BOUNDS(n^1, INF) 5.03/2.13 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (8) 5.03/2.13 Obligation: 5.03/2.13 Analyzing the following TRS for decreasing loops: 5.03/2.13 5.03/2.13 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 5.03/2.13 5.03/2.13 5.03/2.13 The TRS R consists of the following rules: 5.03/2.13 5.03/2.13 a__zeros -> cons(0, zeros) 5.03/2.13 a__and(tt, X) -> mark(X) 5.03/2.13 a__length(nil) -> 0 5.03/2.13 a__length(cons(N, L)) -> s(a__length(mark(L))) 5.03/2.13 a__take(0, IL) -> nil 5.03/2.13 a__take(s(M), cons(N, IL)) -> cons(mark(N), take(M, IL)) 5.03/2.13 mark(zeros) -> a__zeros 5.03/2.13 mark(and(X1, X2)) -> a__and(mark(X1), X2) 5.03/2.13 mark(length(X)) -> a__length(mark(X)) 5.03/2.13 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 5.03/2.13 mark(cons(X1, X2)) -> cons(mark(X1), X2) 5.03/2.13 mark(0) -> 0 5.03/2.13 mark(tt) -> tt 5.03/2.13 mark(nil) -> nil 5.03/2.13 mark(s(X)) -> s(mark(X)) 5.03/2.13 a__zeros -> zeros 5.03/2.13 a__and(X1, X2) -> and(X1, X2) 5.03/2.13 a__length(X) -> length(X) 5.03/2.13 a__take(X1, X2) -> take(X1, X2) 5.03/2.13 5.03/2.13 S is empty. 5.03/2.13 Rewrite Strategy: FULL 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (9) InfiniteLowerBoundProof (FINISHED) 5.03/2.13 The following loop proves infinite runtime complexity: 5.03/2.13 5.03/2.13 The rewrite sequence 5.03/2.13 5.03/2.13 a__length(cons(N, zeros)) ->^+ s(a__length(cons(0, zeros))) 5.03/2.13 5.03/2.13 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 5.03/2.13 5.03/2.13 The pumping substitution is [ ]. 5.03/2.13 5.03/2.13 The result substitution is [N / 0]. 5.03/2.13 5.03/2.13 5.03/2.13 5.03/2.13 5.03/2.13 ---------------------------------------- 5.03/2.13 5.03/2.13 (10) 5.03/2.13 BOUNDS(INF, INF) 5.03/2.16 EOF