4.38/2.30 WORST_CASE(Omega(n^1), O(n^1)) 4.38/2.32 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 4.38/2.32 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.38/2.32 4.38/2.32 4.38/2.32 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.38/2.32 4.38/2.32 (0) CpxTRS 4.38/2.32 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 4.38/2.32 (2) CpxTRS 4.38/2.32 (3) CpxTrsMatchBoundsTAProof [FINISHED, 117 ms] 4.38/2.32 (4) BOUNDS(1, n^1) 4.38/2.32 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 4.38/2.32 (6) TRS for Loop Detection 4.38/2.32 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 4.38/2.32 (8) BEST 4.38/2.32 (9) proven lower bound 4.38/2.32 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 4.38/2.32 (11) BOUNDS(n^1, INF) 4.38/2.32 (12) TRS for Loop Detection 4.38/2.32 4.38/2.32 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (0) 4.38/2.32 Obligation: 4.38/2.32 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.38/2.32 4.38/2.32 4.38/2.32 The TRS R consists of the following rules: 4.38/2.32 4.38/2.32 a__f(0) -> cons(0, f(s(0))) 4.38/2.32 a__f(s(0)) -> a__f(a__p(s(0))) 4.38/2.32 a__p(s(0)) -> 0 4.38/2.32 mark(f(X)) -> a__f(mark(X)) 4.38/2.32 mark(p(X)) -> a__p(mark(X)) 4.38/2.32 mark(0) -> 0 4.38/2.32 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.38/2.32 mark(s(X)) -> s(mark(X)) 4.38/2.32 a__f(X) -> f(X) 4.38/2.32 a__p(X) -> p(X) 4.38/2.32 4.38/2.32 S is empty. 4.38/2.32 Rewrite Strategy: FULL 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 4.38/2.32 transformed relative TRS to TRS 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (2) 4.38/2.32 Obligation: 4.38/2.32 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 4.38/2.32 4.38/2.32 4.38/2.32 The TRS R consists of the following rules: 4.38/2.32 4.38/2.32 a__f(0) -> cons(0, f(s(0))) 4.38/2.32 a__f(s(0)) -> a__f(a__p(s(0))) 4.38/2.32 a__p(s(0)) -> 0 4.38/2.32 mark(f(X)) -> a__f(mark(X)) 4.38/2.32 mark(p(X)) -> a__p(mark(X)) 4.38/2.32 mark(0) -> 0 4.38/2.32 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.38/2.32 mark(s(X)) -> s(mark(X)) 4.38/2.32 a__f(X) -> f(X) 4.38/2.32 a__p(X) -> p(X) 4.38/2.32 4.38/2.32 S is empty. 4.38/2.32 Rewrite Strategy: FULL 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (3) CpxTrsMatchBoundsTAProof (FINISHED) 4.38/2.32 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 3. 4.38/2.32 4.38/2.32 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 4.38/2.32 final states : [1, 2, 3] 4.38/2.32 transitions: 4.38/2.32 00() -> 0 4.38/2.32 cons0(0, 0) -> 0 4.38/2.32 f0(0) -> 0 4.38/2.32 s0(0) -> 0 4.38/2.32 p0(0) -> 0 4.38/2.32 a__f0(0) -> 1 4.38/2.32 a__p0(0) -> 2 4.38/2.32 mark0(0) -> 3 4.38/2.32 01() -> 4 4.38/2.32 01() -> 7 4.38/2.32 s1(7) -> 6 4.38/2.32 f1(6) -> 5 4.38/2.32 cons1(4, 5) -> 1 4.38/2.32 s1(7) -> 9 4.38/2.32 a__p1(9) -> 8 4.38/2.32 a__f1(8) -> 1 4.38/2.32 01() -> 2 4.38/2.32 mark1(0) -> 10 4.38/2.32 a__f1(10) -> 3 4.38/2.32 mark1(0) -> 11 4.38/2.32 a__p1(11) -> 3 4.38/2.32 01() -> 3 4.38/2.32 mark1(0) -> 12 4.38/2.32 cons1(12, 0) -> 3 4.38/2.32 mark1(0) -> 13 4.38/2.32 s1(13) -> 3 4.38/2.32 f1(0) -> 1 4.38/2.32 p1(0) -> 2 4.38/2.32 02() -> 8 4.38/2.32 a__f1(10) -> 10 4.38/2.32 a__f1(10) -> 11 4.38/2.32 a__f1(10) -> 12 4.38/2.32 a__f1(10) -> 13 4.38/2.32 a__p1(11) -> 10 4.38/2.32 a__p1(11) -> 11 4.38/2.32 a__p1(11) -> 12 4.38/2.32 a__p1(11) -> 13 4.38/2.32 01() -> 10 4.38/2.32 01() -> 11 4.38/2.32 01() -> 12 4.38/2.32 01() -> 13 4.38/2.32 cons1(12, 0) -> 10 4.38/2.32 cons1(12, 0) -> 11 4.38/2.32 cons1(12, 0) -> 12 4.38/2.32 cons1(12, 0) -> 13 4.38/2.32 s1(13) -> 10 4.38/2.32 s1(13) -> 11 4.38/2.32 s1(13) -> 12 4.38/2.32 s1(13) -> 13 4.38/2.32 f2(8) -> 1 4.38/2.32 f2(10) -> 3 4.38/2.32 p2(11) -> 3 4.38/2.32 p2(9) -> 8 4.38/2.32 02() -> 14 4.38/2.32 02() -> 17 4.38/2.32 s2(17) -> 16 4.38/2.32 f2(16) -> 15 4.38/2.32 cons2(14, 15) -> 3 4.38/2.32 cons2(14, 15) -> 10 4.38/2.32 cons2(14, 15) -> 11 4.38/2.32 cons2(14, 15) -> 12 4.38/2.32 cons2(14, 15) -> 13 4.38/2.32 s2(17) -> 19 4.38/2.32 a__p2(19) -> 18 4.38/2.32 a__f2(18) -> 3 4.38/2.32 a__f2(18) -> 10 4.38/2.32 a__f2(18) -> 11 4.38/2.32 a__f2(18) -> 12 4.38/2.32 a__f2(18) -> 13 4.38/2.32 02() -> 3 4.38/2.32 02() -> 10 4.38/2.32 02() -> 11 4.38/2.32 02() -> 12 4.38/2.32 02() -> 13 4.38/2.32 f2(10) -> 10 4.38/2.32 f2(10) -> 11 4.38/2.32 f2(10) -> 12 4.38/2.32 f2(10) -> 13 4.38/2.32 p2(11) -> 10 4.38/2.32 p2(11) -> 11 4.38/2.32 p2(11) -> 12 4.38/2.32 p2(11) -> 13 4.38/2.32 cons2(14, 15) -> 1 4.38/2.32 03() -> 18 4.38/2.32 f3(18) -> 3 4.38/2.32 f3(18) -> 10 4.38/2.32 f3(18) -> 11 4.38/2.32 f3(18) -> 12 4.38/2.32 f3(18) -> 13 4.38/2.32 p3(19) -> 18 4.38/2.32 03() -> 20 4.38/2.32 03() -> 23 4.38/2.32 s3(23) -> 22 4.38/2.32 f3(22) -> 21 4.38/2.32 cons3(20, 21) -> 3 4.38/2.32 cons3(20, 21) -> 10 4.38/2.32 cons3(20, 21) -> 11 4.38/2.32 cons3(20, 21) -> 12 4.38/2.32 cons3(20, 21) -> 13 4.38/2.32 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (4) 4.38/2.32 BOUNDS(1, n^1) 4.38/2.32 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 4.38/2.32 Transformed a relative TRS into a decreasing-loop problem. 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (6) 4.38/2.32 Obligation: 4.38/2.32 Analyzing the following TRS for decreasing loops: 4.38/2.32 4.38/2.32 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.38/2.32 4.38/2.32 4.38/2.32 The TRS R consists of the following rules: 4.38/2.32 4.38/2.32 a__f(0) -> cons(0, f(s(0))) 4.38/2.32 a__f(s(0)) -> a__f(a__p(s(0))) 4.38/2.32 a__p(s(0)) -> 0 4.38/2.32 mark(f(X)) -> a__f(mark(X)) 4.38/2.32 mark(p(X)) -> a__p(mark(X)) 4.38/2.32 mark(0) -> 0 4.38/2.32 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.38/2.32 mark(s(X)) -> s(mark(X)) 4.38/2.32 a__f(X) -> f(X) 4.38/2.32 a__p(X) -> p(X) 4.38/2.32 4.38/2.32 S is empty. 4.38/2.32 Rewrite Strategy: FULL 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (7) DecreasingLoopProof (LOWER BOUND(ID)) 4.38/2.32 The following loop(s) give(s) rise to the lower bound Omega(n^1): 4.38/2.32 4.38/2.32 The rewrite sequence 4.38/2.32 4.38/2.32 mark(f(X)) ->^+ a__f(mark(X)) 4.38/2.32 4.38/2.32 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 4.38/2.32 4.38/2.32 The pumping substitution is [X / f(X)]. 4.38/2.32 4.38/2.32 The result substitution is [ ]. 4.38/2.32 4.38/2.32 4.38/2.32 4.38/2.32 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (8) 4.38/2.32 Complex Obligation (BEST) 4.38/2.32 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (9) 4.38/2.32 Obligation: 4.38/2.32 Proved the lower bound n^1 for the following obligation: 4.38/2.32 4.38/2.32 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.38/2.32 4.38/2.32 4.38/2.32 The TRS R consists of the following rules: 4.38/2.32 4.38/2.32 a__f(0) -> cons(0, f(s(0))) 4.38/2.32 a__f(s(0)) -> a__f(a__p(s(0))) 4.38/2.32 a__p(s(0)) -> 0 4.38/2.32 mark(f(X)) -> a__f(mark(X)) 4.38/2.32 mark(p(X)) -> a__p(mark(X)) 4.38/2.32 mark(0) -> 0 4.38/2.32 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.38/2.32 mark(s(X)) -> s(mark(X)) 4.38/2.32 a__f(X) -> f(X) 4.38/2.32 a__p(X) -> p(X) 4.38/2.32 4.38/2.32 S is empty. 4.38/2.32 Rewrite Strategy: FULL 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (10) LowerBoundPropagationProof (FINISHED) 4.38/2.32 Propagated lower bound. 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (11) 4.38/2.32 BOUNDS(n^1, INF) 4.38/2.32 4.38/2.32 ---------------------------------------- 4.38/2.32 4.38/2.32 (12) 4.38/2.32 Obligation: 4.38/2.32 Analyzing the following TRS for decreasing loops: 4.38/2.32 4.38/2.32 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 4.38/2.32 4.38/2.32 4.38/2.32 The TRS R consists of the following rules: 4.38/2.32 4.38/2.32 a__f(0) -> cons(0, f(s(0))) 4.38/2.32 a__f(s(0)) -> a__f(a__p(s(0))) 4.38/2.32 a__p(s(0)) -> 0 4.38/2.32 mark(f(X)) -> a__f(mark(X)) 4.38/2.32 mark(p(X)) -> a__p(mark(X)) 4.38/2.32 mark(0) -> 0 4.38/2.32 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.38/2.32 mark(s(X)) -> s(mark(X)) 4.38/2.32 a__f(X) -> f(X) 4.38/2.32 a__p(X) -> p(X) 4.38/2.32 4.38/2.32 S is empty. 4.38/2.32 Rewrite Strategy: FULL 4.51/2.35 EOF