4.23/1.85 WORST_CASE(NON_POLY, ?) 4.23/1.86 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 4.23/1.86 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.23/1.86 4.23/1.86 4.23/1.86 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 4.23/1.86 4.23/1.86 (0) CpxTRS 4.23/1.86 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 4.23/1.86 (2) TRS for Loop Detection 4.23/1.86 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 4.23/1.86 (4) BEST 4.23/1.86 (5) proven lower bound 4.23/1.86 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 4.23/1.86 (7) BOUNDS(n^1, INF) 4.23/1.86 (8) TRS for Loop Detection 4.23/1.86 (9) DecreasingLoopProof [FINISHED, 154 ms] 4.23/1.86 (10) BOUNDS(EXP, INF) 4.23/1.86 4.23/1.86 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (0) 4.23/1.86 Obligation: 4.23/1.86 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 4.23/1.86 4.23/1.86 4.23/1.86 The TRS R consists of the following rules: 4.23/1.86 4.23/1.86 U11(tt, N) -> activate(N) 4.23/1.86 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 4.23/1.86 and(tt, X) -> activate(X) 4.23/1.86 isNat(n__0) -> tt 4.23/1.86 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 4.23/1.86 isNat(n__s(V1)) -> isNat(activate(V1)) 4.23/1.86 plus(N, 0) -> U11(isNat(N), N) 4.23/1.86 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 4.23/1.86 0 -> n__0 4.23/1.86 plus(X1, X2) -> n__plus(X1, X2) 4.23/1.86 isNat(X) -> n__isNat(X) 4.23/1.86 s(X) -> n__s(X) 4.23/1.86 activate(n__0) -> 0 4.23/1.86 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 4.23/1.86 activate(n__isNat(X)) -> isNat(X) 4.23/1.86 activate(n__s(X)) -> s(activate(X)) 4.23/1.86 activate(X) -> X 4.23/1.86 4.23/1.86 S is empty. 4.23/1.86 Rewrite Strategy: FULL 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 4.23/1.86 Transformed a relative TRS into a decreasing-loop problem. 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (2) 4.23/1.86 Obligation: 4.23/1.86 Analyzing the following TRS for decreasing loops: 4.23/1.86 4.23/1.86 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 4.23/1.86 4.23/1.86 4.23/1.86 The TRS R consists of the following rules: 4.23/1.86 4.23/1.86 U11(tt, N) -> activate(N) 4.23/1.86 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 4.23/1.86 and(tt, X) -> activate(X) 4.23/1.86 isNat(n__0) -> tt 4.23/1.86 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 4.23/1.86 isNat(n__s(V1)) -> isNat(activate(V1)) 4.23/1.86 plus(N, 0) -> U11(isNat(N), N) 4.23/1.86 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 4.23/1.86 0 -> n__0 4.23/1.86 plus(X1, X2) -> n__plus(X1, X2) 4.23/1.86 isNat(X) -> n__isNat(X) 4.23/1.86 s(X) -> n__s(X) 4.23/1.86 activate(n__0) -> 0 4.23/1.86 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 4.23/1.86 activate(n__isNat(X)) -> isNat(X) 4.23/1.86 activate(n__s(X)) -> s(activate(X)) 4.23/1.86 activate(X) -> X 4.23/1.86 4.23/1.86 S is empty. 4.23/1.86 Rewrite Strategy: FULL 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (3) DecreasingLoopProof (LOWER BOUND(ID)) 4.23/1.86 The following loop(s) give(s) rise to the lower bound Omega(n^1): 4.23/1.86 4.23/1.86 The rewrite sequence 4.23/1.86 4.23/1.86 activate(n__s(X)) ->^+ s(activate(X)) 4.23/1.86 4.23/1.86 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 4.23/1.86 4.23/1.86 The pumping substitution is [X / n__s(X)]. 4.23/1.86 4.23/1.86 The result substitution is [ ]. 4.23/1.86 4.23/1.86 4.23/1.86 4.23/1.86 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (4) 4.23/1.86 Complex Obligation (BEST) 4.23/1.86 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (5) 4.23/1.86 Obligation: 4.23/1.86 Proved the lower bound n^1 for the following obligation: 4.23/1.86 4.23/1.86 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 4.23/1.86 4.23/1.86 4.23/1.86 The TRS R consists of the following rules: 4.23/1.86 4.23/1.86 U11(tt, N) -> activate(N) 4.23/1.86 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 4.23/1.86 and(tt, X) -> activate(X) 4.23/1.86 isNat(n__0) -> tt 4.23/1.86 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 4.23/1.86 isNat(n__s(V1)) -> isNat(activate(V1)) 4.23/1.86 plus(N, 0) -> U11(isNat(N), N) 4.23/1.86 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 4.23/1.86 0 -> n__0 4.23/1.86 plus(X1, X2) -> n__plus(X1, X2) 4.23/1.86 isNat(X) -> n__isNat(X) 4.23/1.86 s(X) -> n__s(X) 4.23/1.86 activate(n__0) -> 0 4.23/1.86 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 4.23/1.86 activate(n__isNat(X)) -> isNat(X) 4.23/1.86 activate(n__s(X)) -> s(activate(X)) 4.23/1.86 activate(X) -> X 4.23/1.86 4.23/1.86 S is empty. 4.23/1.86 Rewrite Strategy: FULL 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (6) LowerBoundPropagationProof (FINISHED) 4.23/1.86 Propagated lower bound. 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (7) 4.23/1.86 BOUNDS(n^1, INF) 4.23/1.86 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (8) 4.23/1.86 Obligation: 4.23/1.86 Analyzing the following TRS for decreasing loops: 4.23/1.86 4.23/1.86 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 4.23/1.86 4.23/1.86 4.23/1.86 The TRS R consists of the following rules: 4.23/1.86 4.23/1.86 U11(tt, N) -> activate(N) 4.23/1.86 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 4.23/1.86 and(tt, X) -> activate(X) 4.23/1.86 isNat(n__0) -> tt 4.23/1.86 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 4.23/1.86 isNat(n__s(V1)) -> isNat(activate(V1)) 4.23/1.86 plus(N, 0) -> U11(isNat(N), N) 4.23/1.86 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 4.23/1.86 0 -> n__0 4.23/1.86 plus(X1, X2) -> n__plus(X1, X2) 4.23/1.86 isNat(X) -> n__isNat(X) 4.23/1.86 s(X) -> n__s(X) 4.23/1.86 activate(n__0) -> 0 4.23/1.86 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 4.23/1.86 activate(n__isNat(X)) -> isNat(X) 4.23/1.86 activate(n__s(X)) -> s(activate(X)) 4.23/1.86 activate(X) -> X 4.23/1.86 4.23/1.86 S is empty. 4.23/1.86 Rewrite Strategy: FULL 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (9) DecreasingLoopProof (FINISHED) 4.23/1.86 The following loop(s) give(s) rise to the lower bound EXP: 4.23/1.86 4.23/1.86 The rewrite sequence 4.23/1.86 4.23/1.86 activate(n__plus(X1, n__s(X1_0))) ->^+ U21(and(isNat(activate(X1_0)), n__isNat(activate(X1))), activate(X1_0), activate(X1)) 4.23/1.86 4.23/1.86 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0]. 4.23/1.86 4.23/1.86 The pumping substitution is [X1_0 / n__plus(X1, n__s(X1_0))]. 4.23/1.86 4.23/1.86 The result substitution is [ ]. 4.23/1.86 4.23/1.86 4.23/1.86 4.23/1.86 The rewrite sequence 4.23/1.86 4.23/1.86 activate(n__plus(X1, n__s(X1_0))) ->^+ U21(and(isNat(activate(X1_0)), n__isNat(activate(X1))), activate(X1_0), activate(X1)) 4.23/1.86 4.23/1.86 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 4.23/1.86 4.23/1.86 The pumping substitution is [X1_0 / n__plus(X1, n__s(X1_0))]. 4.23/1.86 4.23/1.86 The result substitution is [ ]. 4.23/1.86 4.23/1.86 4.23/1.86 4.23/1.86 4.23/1.86 ---------------------------------------- 4.23/1.86 4.23/1.86 (10) 4.23/1.86 BOUNDS(EXP, INF) 4.38/1.90 EOF