4.34/1.92 WORST_CASE(NON_POLY, ?) 4.43/1.93 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 4.43/1.93 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 4.43/1.93 4.43/1.93 4.43/1.93 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 4.43/1.93 4.43/1.93 (0) CpxTRS 4.43/1.93 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 4.43/1.93 (2) TRS for Loop Detection 4.43/1.93 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 4.43/1.93 (4) BEST 4.43/1.93 (5) proven lower bound 4.43/1.93 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 4.43/1.93 (7) BOUNDS(n^1, INF) 4.43/1.93 (8) TRS for Loop Detection 4.43/1.93 (9) InfiniteLowerBoundProof [FINISHED, 108 ms] 4.43/1.93 (10) BOUNDS(INF, INF) 4.43/1.93 4.43/1.93 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (0) 4.43/1.93 Obligation: 4.43/1.93 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 4.43/1.93 4.43/1.93 4.43/1.93 The TRS R consists of the following rules: 4.43/1.93 4.43/1.93 a__zeros -> cons(0, zeros) 4.43/1.93 a__and(tt, X) -> mark(X) 4.43/1.93 a__length(nil) -> 0 4.43/1.93 a__length(cons(N, L)) -> s(a__length(mark(L))) 4.43/1.93 mark(zeros) -> a__zeros 4.43/1.93 mark(and(X1, X2)) -> a__and(mark(X1), X2) 4.43/1.93 mark(length(X)) -> a__length(mark(X)) 4.43/1.93 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.43/1.93 mark(0) -> 0 4.43/1.93 mark(tt) -> tt 4.43/1.93 mark(nil) -> nil 4.43/1.93 mark(s(X)) -> s(mark(X)) 4.43/1.93 a__zeros -> zeros 4.43/1.93 a__and(X1, X2) -> and(X1, X2) 4.43/1.93 a__length(X) -> length(X) 4.43/1.93 4.43/1.93 S is empty. 4.43/1.93 Rewrite Strategy: FULL 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 4.43/1.93 Transformed a relative TRS into a decreasing-loop problem. 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (2) 4.43/1.93 Obligation: 4.43/1.93 Analyzing the following TRS for decreasing loops: 4.43/1.93 4.43/1.93 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 4.43/1.93 4.43/1.93 4.43/1.93 The TRS R consists of the following rules: 4.43/1.93 4.43/1.93 a__zeros -> cons(0, zeros) 4.43/1.93 a__and(tt, X) -> mark(X) 4.43/1.93 a__length(nil) -> 0 4.43/1.93 a__length(cons(N, L)) -> s(a__length(mark(L))) 4.43/1.93 mark(zeros) -> a__zeros 4.43/1.93 mark(and(X1, X2)) -> a__and(mark(X1), X2) 4.43/1.93 mark(length(X)) -> a__length(mark(X)) 4.43/1.93 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.43/1.93 mark(0) -> 0 4.43/1.93 mark(tt) -> tt 4.43/1.93 mark(nil) -> nil 4.43/1.93 mark(s(X)) -> s(mark(X)) 4.43/1.93 a__zeros -> zeros 4.43/1.93 a__and(X1, X2) -> and(X1, X2) 4.43/1.93 a__length(X) -> length(X) 4.43/1.93 4.43/1.93 S is empty. 4.43/1.93 Rewrite Strategy: FULL 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (3) DecreasingLoopProof (LOWER BOUND(ID)) 4.43/1.93 The following loop(s) give(s) rise to the lower bound Omega(n^1): 4.43/1.93 4.43/1.93 The rewrite sequence 4.43/1.93 4.43/1.93 mark(length(X)) ->^+ a__length(mark(X)) 4.43/1.93 4.43/1.93 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 4.43/1.93 4.43/1.93 The pumping substitution is [X / length(X)]. 4.43/1.93 4.43/1.93 The result substitution is [ ]. 4.43/1.93 4.43/1.93 4.43/1.93 4.43/1.93 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (4) 4.43/1.93 Complex Obligation (BEST) 4.43/1.93 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (5) 4.43/1.93 Obligation: 4.43/1.93 Proved the lower bound n^1 for the following obligation: 4.43/1.93 4.43/1.93 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 4.43/1.93 4.43/1.93 4.43/1.93 The TRS R consists of the following rules: 4.43/1.93 4.43/1.93 a__zeros -> cons(0, zeros) 4.43/1.93 a__and(tt, X) -> mark(X) 4.43/1.93 a__length(nil) -> 0 4.43/1.93 a__length(cons(N, L)) -> s(a__length(mark(L))) 4.43/1.93 mark(zeros) -> a__zeros 4.43/1.93 mark(and(X1, X2)) -> a__and(mark(X1), X2) 4.43/1.93 mark(length(X)) -> a__length(mark(X)) 4.43/1.93 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.43/1.93 mark(0) -> 0 4.43/1.93 mark(tt) -> tt 4.43/1.93 mark(nil) -> nil 4.43/1.93 mark(s(X)) -> s(mark(X)) 4.43/1.93 a__zeros -> zeros 4.43/1.93 a__and(X1, X2) -> and(X1, X2) 4.43/1.93 a__length(X) -> length(X) 4.43/1.93 4.43/1.93 S is empty. 4.43/1.93 Rewrite Strategy: FULL 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (6) LowerBoundPropagationProof (FINISHED) 4.43/1.93 Propagated lower bound. 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (7) 4.43/1.93 BOUNDS(n^1, INF) 4.43/1.93 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (8) 4.43/1.93 Obligation: 4.43/1.93 Analyzing the following TRS for decreasing loops: 4.43/1.93 4.43/1.93 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 4.43/1.93 4.43/1.93 4.43/1.93 The TRS R consists of the following rules: 4.43/1.93 4.43/1.93 a__zeros -> cons(0, zeros) 4.43/1.93 a__and(tt, X) -> mark(X) 4.43/1.93 a__length(nil) -> 0 4.43/1.93 a__length(cons(N, L)) -> s(a__length(mark(L))) 4.43/1.93 mark(zeros) -> a__zeros 4.43/1.93 mark(and(X1, X2)) -> a__and(mark(X1), X2) 4.43/1.93 mark(length(X)) -> a__length(mark(X)) 4.43/1.93 mark(cons(X1, X2)) -> cons(mark(X1), X2) 4.43/1.93 mark(0) -> 0 4.43/1.93 mark(tt) -> tt 4.43/1.93 mark(nil) -> nil 4.43/1.93 mark(s(X)) -> s(mark(X)) 4.43/1.93 a__zeros -> zeros 4.43/1.93 a__and(X1, X2) -> and(X1, X2) 4.43/1.93 a__length(X) -> length(X) 4.43/1.93 4.43/1.93 S is empty. 4.43/1.93 Rewrite Strategy: FULL 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (9) InfiniteLowerBoundProof (FINISHED) 4.43/1.93 The following loop proves infinite runtime complexity: 4.43/1.93 4.43/1.93 The rewrite sequence 4.43/1.93 4.43/1.93 a__length(cons(N, zeros)) ->^+ s(a__length(cons(0, zeros))) 4.43/1.93 4.43/1.93 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 4.43/1.93 4.43/1.93 The pumping substitution is [ ]. 4.43/1.93 4.43/1.93 The result substitution is [N / 0]. 4.43/1.93 4.43/1.93 4.43/1.93 4.43/1.93 4.43/1.93 ---------------------------------------- 4.43/1.93 4.43/1.93 (10) 4.43/1.93 BOUNDS(INF, INF) 4.47/2.49 EOF