3.48/1.58 WORST_CASE(NON_POLY, ?) 3.48/1.59 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.48/1.59 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.48/1.59 3.48/1.59 3.48/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.48/1.59 3.48/1.59 (0) CpxTRS 3.48/1.59 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.48/1.59 (2) TRS for Loop Detection 3.48/1.59 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.48/1.59 (4) BEST 3.48/1.59 (5) proven lower bound 3.48/1.59 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.48/1.59 (7) BOUNDS(n^1, INF) 3.48/1.59 (8) TRS for Loop Detection 3.48/1.59 (9) DecreasingLoopProof [FINISHED, 0 ms] 3.48/1.59 (10) BOUNDS(EXP, INF) 3.48/1.59 3.48/1.59 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (0) 3.48/1.59 Obligation: 3.48/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.48/1.59 3.48/1.59 3.48/1.59 The TRS R consists of the following rules: 3.48/1.59 3.48/1.59 2nd(cons1(X, cons(Y, Z))) -> Y 3.48/1.59 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) 3.48/1.59 from(X) -> cons(X, n__from(n__s(X))) 3.48/1.59 from(X) -> n__from(X) 3.48/1.59 s(X) -> n__s(X) 3.48/1.59 activate(n__from(X)) -> from(activate(X)) 3.48/1.59 activate(n__s(X)) -> s(activate(X)) 3.48/1.59 activate(X) -> X 3.48/1.59 3.48/1.59 S is empty. 3.48/1.59 Rewrite Strategy: FULL 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.48/1.59 Transformed a relative TRS into a decreasing-loop problem. 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (2) 3.48/1.59 Obligation: 3.48/1.59 Analyzing the following TRS for decreasing loops: 3.48/1.59 3.48/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.48/1.59 3.48/1.59 3.48/1.59 The TRS R consists of the following rules: 3.48/1.59 3.48/1.59 2nd(cons1(X, cons(Y, Z))) -> Y 3.48/1.59 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) 3.48/1.59 from(X) -> cons(X, n__from(n__s(X))) 3.48/1.59 from(X) -> n__from(X) 3.48/1.59 s(X) -> n__s(X) 3.48/1.59 activate(n__from(X)) -> from(activate(X)) 3.48/1.59 activate(n__s(X)) -> s(activate(X)) 3.48/1.59 activate(X) -> X 3.48/1.59 3.48/1.59 S is empty. 3.48/1.59 Rewrite Strategy: FULL 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.48/1.59 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.48/1.59 3.48/1.59 The rewrite sequence 3.48/1.59 3.48/1.59 activate(n__s(X)) ->^+ s(activate(X)) 3.48/1.59 3.48/1.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.48/1.59 3.48/1.59 The pumping substitution is [X / n__s(X)]. 3.48/1.59 3.48/1.59 The result substitution is [ ]. 3.48/1.59 3.48/1.59 3.48/1.59 3.48/1.59 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (4) 3.48/1.59 Complex Obligation (BEST) 3.48/1.59 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (5) 3.48/1.59 Obligation: 3.48/1.59 Proved the lower bound n^1 for the following obligation: 3.48/1.59 3.48/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.48/1.59 3.48/1.59 3.48/1.59 The TRS R consists of the following rules: 3.48/1.59 3.48/1.59 2nd(cons1(X, cons(Y, Z))) -> Y 3.48/1.59 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) 3.48/1.59 from(X) -> cons(X, n__from(n__s(X))) 3.48/1.59 from(X) -> n__from(X) 3.48/1.59 s(X) -> n__s(X) 3.48/1.59 activate(n__from(X)) -> from(activate(X)) 3.48/1.59 activate(n__s(X)) -> s(activate(X)) 3.48/1.59 activate(X) -> X 3.48/1.59 3.48/1.59 S is empty. 3.48/1.59 Rewrite Strategy: FULL 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (6) LowerBoundPropagationProof (FINISHED) 3.48/1.59 Propagated lower bound. 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (7) 3.48/1.59 BOUNDS(n^1, INF) 3.48/1.59 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (8) 3.48/1.59 Obligation: 3.48/1.59 Analyzing the following TRS for decreasing loops: 3.48/1.59 3.48/1.59 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.48/1.59 3.48/1.59 3.48/1.59 The TRS R consists of the following rules: 3.48/1.59 3.48/1.59 2nd(cons1(X, cons(Y, Z))) -> Y 3.48/1.59 2nd(cons(X, X1)) -> 2nd(cons1(X, activate(X1))) 3.48/1.59 from(X) -> cons(X, n__from(n__s(X))) 3.48/1.59 from(X) -> n__from(X) 3.48/1.59 s(X) -> n__s(X) 3.48/1.59 activate(n__from(X)) -> from(activate(X)) 3.48/1.59 activate(n__s(X)) -> s(activate(X)) 3.48/1.59 activate(X) -> X 3.48/1.59 3.48/1.59 S is empty. 3.48/1.59 Rewrite Strategy: FULL 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (9) DecreasingLoopProof (FINISHED) 3.48/1.59 The following loop(s) give(s) rise to the lower bound EXP: 3.48/1.59 3.48/1.59 The rewrite sequence 3.48/1.59 3.48/1.59 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.48/1.59 3.48/1.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.48/1.59 3.48/1.59 The pumping substitution is [X / n__from(X)]. 3.48/1.59 3.48/1.59 The result substitution is [ ]. 3.48/1.59 3.48/1.59 3.48/1.59 3.48/1.59 The rewrite sequence 3.48/1.59 3.48/1.59 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 3.48/1.59 3.48/1.59 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.48/1.59 3.48/1.59 The pumping substitution is [X / n__from(X)]. 3.48/1.59 3.48/1.59 The result substitution is [ ]. 3.48/1.59 3.48/1.59 3.48/1.59 3.48/1.59 3.48/1.59 ---------------------------------------- 3.48/1.59 3.48/1.59 (10) 3.48/1.59 BOUNDS(EXP, INF) 3.48/1.61 EOF