3.98/1.89 WORST_CASE(NON_POLY, ?) 3.98/1.90 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.98/1.90 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.98/1.90 3.98/1.90 3.98/1.90 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.98/1.90 3.98/1.90 (0) CpxTRS 3.98/1.90 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.98/1.90 (2) TRS for Loop Detection 3.98/1.90 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.98/1.90 (4) BEST 3.98/1.90 (5) proven lower bound 3.98/1.90 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.98/1.90 (7) BOUNDS(n^1, INF) 3.98/1.90 (8) TRS for Loop Detection 3.98/1.90 (9) DecreasingLoopProof [FINISHED, 101 ms] 3.98/1.90 (10) BOUNDS(EXP, INF) 3.98/1.90 3.98/1.90 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (0) 3.98/1.90 Obligation: 3.98/1.90 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.98/1.90 3.98/1.90 3.98/1.90 The TRS R consists of the following rules: 3.98/1.90 3.98/1.90 U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) 3.98/1.90 U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) 3.98/1.90 U21(tt, X) -> U22(tt, activate(X)) 3.98/1.90 U22(tt, X) -> activate(X) 3.98/1.90 U31(tt, N) -> U32(tt, activate(N)) 3.98/1.90 U32(tt, N) -> activate(N) 3.98/1.90 U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) 3.98/1.90 U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) 3.98/1.90 U51(tt, Y) -> U52(tt, activate(Y)) 3.98/1.90 U52(tt, Y) -> activate(Y) 3.98/1.90 U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) 3.98/1.90 U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.98/1.90 U71(tt, XS) -> U72(tt, activate(XS)) 3.98/1.90 U72(tt, XS) -> activate(XS) 3.98/1.90 U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) 3.98/1.90 U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) 3.98/1.90 afterNth(N, XS) -> U11(tt, N, XS) 3.98/1.90 fst(pair(X, Y)) -> U21(tt, X) 3.98/1.90 head(cons(N, XS)) -> U31(tt, N) 3.98/1.90 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.98/1.90 sel(N, XS) -> U41(tt, N, XS) 3.98/1.90 snd(pair(X, Y)) -> U51(tt, Y) 3.98/1.90 splitAt(0, XS) -> pair(nil, XS) 3.98/1.90 splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) 3.98/1.90 tail(cons(N, XS)) -> U71(tt, activate(XS)) 3.98/1.90 take(N, XS) -> U81(tt, N, XS) 3.98/1.90 natsFrom(X) -> n__natsFrom(X) 3.98/1.90 s(X) -> n__s(X) 3.98/1.90 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.98/1.90 activate(n__s(X)) -> s(activate(X)) 3.98/1.90 activate(X) -> X 3.98/1.90 3.98/1.90 S is empty. 3.98/1.90 Rewrite Strategy: FULL 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.98/1.90 Transformed a relative TRS into a decreasing-loop problem. 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (2) 3.98/1.90 Obligation: 3.98/1.90 Analyzing the following TRS for decreasing loops: 3.98/1.90 3.98/1.90 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.98/1.90 3.98/1.90 3.98/1.90 The TRS R consists of the following rules: 3.98/1.90 3.98/1.90 U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) 3.98/1.90 U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) 3.98/1.90 U21(tt, X) -> U22(tt, activate(X)) 3.98/1.90 U22(tt, X) -> activate(X) 3.98/1.90 U31(tt, N) -> U32(tt, activate(N)) 3.98/1.90 U32(tt, N) -> activate(N) 3.98/1.90 U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) 3.98/1.90 U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) 3.98/1.90 U51(tt, Y) -> U52(tt, activate(Y)) 3.98/1.90 U52(tt, Y) -> activate(Y) 3.98/1.90 U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) 3.98/1.90 U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.98/1.90 U71(tt, XS) -> U72(tt, activate(XS)) 3.98/1.90 U72(tt, XS) -> activate(XS) 3.98/1.90 U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) 3.98/1.90 U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) 3.98/1.90 afterNth(N, XS) -> U11(tt, N, XS) 3.98/1.90 fst(pair(X, Y)) -> U21(tt, X) 3.98/1.90 head(cons(N, XS)) -> U31(tt, N) 3.98/1.90 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.98/1.90 sel(N, XS) -> U41(tt, N, XS) 3.98/1.90 snd(pair(X, Y)) -> U51(tt, Y) 3.98/1.90 splitAt(0, XS) -> pair(nil, XS) 3.98/1.90 splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) 3.98/1.90 tail(cons(N, XS)) -> U71(tt, activate(XS)) 3.98/1.90 take(N, XS) -> U81(tt, N, XS) 3.98/1.90 natsFrom(X) -> n__natsFrom(X) 3.98/1.90 s(X) -> n__s(X) 3.98/1.90 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.98/1.90 activate(n__s(X)) -> s(activate(X)) 3.98/1.90 activate(X) -> X 3.98/1.90 3.98/1.90 S is empty. 3.98/1.90 Rewrite Strategy: FULL 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.98/1.90 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.98/1.90 3.98/1.90 The rewrite sequence 3.98/1.90 3.98/1.90 activate(n__s(X)) ->^+ s(activate(X)) 3.98/1.90 3.98/1.90 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.98/1.90 3.98/1.90 The pumping substitution is [X / n__s(X)]. 3.98/1.90 3.98/1.90 The result substitution is [ ]. 3.98/1.90 3.98/1.90 3.98/1.90 3.98/1.90 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (4) 3.98/1.90 Complex Obligation (BEST) 3.98/1.90 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (5) 3.98/1.90 Obligation: 3.98/1.90 Proved the lower bound n^1 for the following obligation: 3.98/1.90 3.98/1.90 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.98/1.90 3.98/1.90 3.98/1.90 The TRS R consists of the following rules: 3.98/1.90 3.98/1.90 U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) 3.98/1.90 U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) 3.98/1.90 U21(tt, X) -> U22(tt, activate(X)) 3.98/1.90 U22(tt, X) -> activate(X) 3.98/1.90 U31(tt, N) -> U32(tt, activate(N)) 3.98/1.90 U32(tt, N) -> activate(N) 3.98/1.90 U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) 3.98/1.90 U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) 3.98/1.90 U51(tt, Y) -> U52(tt, activate(Y)) 3.98/1.90 U52(tt, Y) -> activate(Y) 3.98/1.90 U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) 3.98/1.90 U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.98/1.90 U71(tt, XS) -> U72(tt, activate(XS)) 3.98/1.90 U72(tt, XS) -> activate(XS) 3.98/1.90 U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) 3.98/1.90 U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) 3.98/1.90 afterNth(N, XS) -> U11(tt, N, XS) 3.98/1.90 fst(pair(X, Y)) -> U21(tt, X) 3.98/1.90 head(cons(N, XS)) -> U31(tt, N) 3.98/1.90 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.98/1.90 sel(N, XS) -> U41(tt, N, XS) 3.98/1.90 snd(pair(X, Y)) -> U51(tt, Y) 3.98/1.90 splitAt(0, XS) -> pair(nil, XS) 3.98/1.90 splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) 3.98/1.90 tail(cons(N, XS)) -> U71(tt, activate(XS)) 3.98/1.90 take(N, XS) -> U81(tt, N, XS) 3.98/1.90 natsFrom(X) -> n__natsFrom(X) 3.98/1.90 s(X) -> n__s(X) 3.98/1.90 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.98/1.90 activate(n__s(X)) -> s(activate(X)) 3.98/1.90 activate(X) -> X 3.98/1.90 3.98/1.90 S is empty. 3.98/1.90 Rewrite Strategy: FULL 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (6) LowerBoundPropagationProof (FINISHED) 3.98/1.90 Propagated lower bound. 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (7) 3.98/1.90 BOUNDS(n^1, INF) 3.98/1.90 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (8) 3.98/1.90 Obligation: 3.98/1.90 Analyzing the following TRS for decreasing loops: 3.98/1.90 3.98/1.90 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.98/1.90 3.98/1.90 3.98/1.90 The TRS R consists of the following rules: 3.98/1.90 3.98/1.90 U11(tt, N, XS) -> U12(tt, activate(N), activate(XS)) 3.98/1.90 U12(tt, N, XS) -> snd(splitAt(activate(N), activate(XS))) 3.98/1.90 U21(tt, X) -> U22(tt, activate(X)) 3.98/1.90 U22(tt, X) -> activate(X) 3.98/1.90 U31(tt, N) -> U32(tt, activate(N)) 3.98/1.90 U32(tt, N) -> activate(N) 3.98/1.90 U41(tt, N, XS) -> U42(tt, activate(N), activate(XS)) 3.98/1.90 U42(tt, N, XS) -> head(afterNth(activate(N), activate(XS))) 3.98/1.90 U51(tt, Y) -> U52(tt, activate(Y)) 3.98/1.90 U52(tt, Y) -> activate(Y) 3.98/1.90 U61(tt, N, X, XS) -> U62(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U62(tt, N, X, XS) -> U63(tt, activate(N), activate(X), activate(XS)) 3.98/1.90 U63(tt, N, X, XS) -> U64(splitAt(activate(N), activate(XS)), activate(X)) 3.98/1.90 U64(pair(YS, ZS), X) -> pair(cons(activate(X), YS), ZS) 3.98/1.90 U71(tt, XS) -> U72(tt, activate(XS)) 3.98/1.90 U72(tt, XS) -> activate(XS) 3.98/1.90 U81(tt, N, XS) -> U82(tt, activate(N), activate(XS)) 3.98/1.90 U82(tt, N, XS) -> fst(splitAt(activate(N), activate(XS))) 3.98/1.90 afterNth(N, XS) -> U11(tt, N, XS) 3.98/1.90 fst(pair(X, Y)) -> U21(tt, X) 3.98/1.90 head(cons(N, XS)) -> U31(tt, N) 3.98/1.90 natsFrom(N) -> cons(N, n__natsFrom(n__s(N))) 3.98/1.90 sel(N, XS) -> U41(tt, N, XS) 3.98/1.90 snd(pair(X, Y)) -> U51(tt, Y) 3.98/1.90 splitAt(0, XS) -> pair(nil, XS) 3.98/1.90 splitAt(s(N), cons(X, XS)) -> U61(tt, N, X, activate(XS)) 3.98/1.90 tail(cons(N, XS)) -> U71(tt, activate(XS)) 3.98/1.90 take(N, XS) -> U81(tt, N, XS) 3.98/1.90 natsFrom(X) -> n__natsFrom(X) 3.98/1.90 s(X) -> n__s(X) 3.98/1.90 activate(n__natsFrom(X)) -> natsFrom(activate(X)) 3.98/1.90 activate(n__s(X)) -> s(activate(X)) 3.98/1.90 activate(X) -> X 3.98/1.90 3.98/1.90 S is empty. 3.98/1.90 Rewrite Strategy: FULL 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (9) DecreasingLoopProof (FINISHED) 3.98/1.90 The following loop(s) give(s) rise to the lower bound EXP: 3.98/1.90 3.98/1.90 The rewrite sequence 3.98/1.90 3.98/1.90 activate(n__natsFrom(X)) ->^+ cons(activate(X), n__natsFrom(n__s(activate(X)))) 3.98/1.90 3.98/1.90 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.98/1.90 3.98/1.90 The pumping substitution is [X / n__natsFrom(X)]. 3.98/1.90 3.98/1.90 The result substitution is [ ]. 3.98/1.90 3.98/1.90 3.98/1.90 3.98/1.90 The rewrite sequence 3.98/1.90 3.98/1.90 activate(n__natsFrom(X)) ->^+ cons(activate(X), n__natsFrom(n__s(activate(X)))) 3.98/1.90 3.98/1.90 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.98/1.90 3.98/1.90 The pumping substitution is [X / n__natsFrom(X)]. 3.98/1.90 3.98/1.90 The result substitution is [ ]. 3.98/1.90 3.98/1.90 3.98/1.90 3.98/1.90 3.98/1.90 ---------------------------------------- 3.98/1.90 3.98/1.90 (10) 3.98/1.90 BOUNDS(EXP, INF) 4.23/1.94 EOF