3.52/1.69 WORST_CASE(NON_POLY, ?) 3.68/1.71 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.68/1.71 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.68/1.71 3.68/1.71 3.68/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.68/1.71 3.68/1.71 (0) CpxTRS 3.68/1.71 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.68/1.71 (2) TRS for Loop Detection 3.68/1.71 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.68/1.71 (4) BEST 3.68/1.71 (5) proven lower bound 3.68/1.71 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.68/1.71 (7) BOUNDS(n^1, INF) 3.68/1.71 (8) TRS for Loop Detection 3.68/1.71 (9) DecreasingLoopProof [FINISHED, 13 ms] 3.68/1.71 (10) BOUNDS(EXP, INF) 3.68/1.71 3.68/1.71 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (0) 3.68/1.71 Obligation: 3.68/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.68/1.71 3.68/1.71 3.68/1.71 The TRS R consists of the following rules: 3.68/1.71 3.68/1.71 a__fib(N) -> a__sel(mark(N), a__fib1(s(0), s(0))) 3.68/1.71 a__fib1(X, Y) -> cons(mark(X), fib1(Y, add(X, Y))) 3.68/1.71 a__add(0, X) -> mark(X) 3.68/1.71 a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) 3.68/1.71 a__sel(0, cons(X, XS)) -> mark(X) 3.68/1.71 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.68/1.71 mark(fib(X)) -> a__fib(mark(X)) 3.68/1.71 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.68/1.71 mark(fib1(X1, X2)) -> a__fib1(mark(X1), mark(X2)) 3.68/1.71 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 3.68/1.71 mark(s(X)) -> s(mark(X)) 3.68/1.71 mark(0) -> 0 3.68/1.71 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.68/1.71 a__fib(X) -> fib(X) 3.68/1.71 a__sel(X1, X2) -> sel(X1, X2) 3.68/1.71 a__fib1(X1, X2) -> fib1(X1, X2) 3.68/1.71 a__add(X1, X2) -> add(X1, X2) 3.68/1.71 3.68/1.71 S is empty. 3.68/1.71 Rewrite Strategy: FULL 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.68/1.71 Transformed a relative TRS into a decreasing-loop problem. 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (2) 3.68/1.71 Obligation: 3.68/1.71 Analyzing the following TRS for decreasing loops: 3.68/1.71 3.68/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.68/1.71 3.68/1.71 3.68/1.71 The TRS R consists of the following rules: 3.68/1.71 3.68/1.71 a__fib(N) -> a__sel(mark(N), a__fib1(s(0), s(0))) 3.68/1.71 a__fib1(X, Y) -> cons(mark(X), fib1(Y, add(X, Y))) 3.68/1.71 a__add(0, X) -> mark(X) 3.68/1.71 a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) 3.68/1.71 a__sel(0, cons(X, XS)) -> mark(X) 3.68/1.71 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.68/1.71 mark(fib(X)) -> a__fib(mark(X)) 3.68/1.71 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.68/1.71 mark(fib1(X1, X2)) -> a__fib1(mark(X1), mark(X2)) 3.68/1.71 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 3.68/1.71 mark(s(X)) -> s(mark(X)) 3.68/1.71 mark(0) -> 0 3.68/1.71 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.68/1.71 a__fib(X) -> fib(X) 3.68/1.71 a__sel(X1, X2) -> sel(X1, X2) 3.68/1.71 a__fib1(X1, X2) -> fib1(X1, X2) 3.68/1.71 a__add(X1, X2) -> add(X1, X2) 3.68/1.71 3.68/1.71 S is empty. 3.68/1.71 Rewrite Strategy: FULL 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.68/1.71 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.68/1.71 3.68/1.71 The rewrite sequence 3.68/1.71 3.68/1.71 mark(fib1(X1, X2)) ->^+ a__fib1(mark(X1), mark(X2)) 3.68/1.71 3.68/1.71 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.68/1.71 3.68/1.71 The pumping substitution is [X1 / fib1(X1, X2)]. 3.68/1.71 3.68/1.71 The result substitution is [ ]. 3.68/1.71 3.68/1.71 3.68/1.71 3.68/1.71 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (4) 3.68/1.71 Complex Obligation (BEST) 3.68/1.71 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (5) 3.68/1.71 Obligation: 3.68/1.71 Proved the lower bound n^1 for the following obligation: 3.68/1.71 3.68/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.68/1.71 3.68/1.71 3.68/1.71 The TRS R consists of the following rules: 3.68/1.71 3.68/1.71 a__fib(N) -> a__sel(mark(N), a__fib1(s(0), s(0))) 3.68/1.71 a__fib1(X, Y) -> cons(mark(X), fib1(Y, add(X, Y))) 3.68/1.71 a__add(0, X) -> mark(X) 3.68/1.71 a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) 3.68/1.71 a__sel(0, cons(X, XS)) -> mark(X) 3.68/1.71 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.68/1.71 mark(fib(X)) -> a__fib(mark(X)) 3.68/1.71 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.68/1.71 mark(fib1(X1, X2)) -> a__fib1(mark(X1), mark(X2)) 3.68/1.71 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 3.68/1.71 mark(s(X)) -> s(mark(X)) 3.68/1.71 mark(0) -> 0 3.68/1.71 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.68/1.71 a__fib(X) -> fib(X) 3.68/1.71 a__sel(X1, X2) -> sel(X1, X2) 3.68/1.71 a__fib1(X1, X2) -> fib1(X1, X2) 3.68/1.71 a__add(X1, X2) -> add(X1, X2) 3.68/1.71 3.68/1.71 S is empty. 3.68/1.71 Rewrite Strategy: FULL 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (6) LowerBoundPropagationProof (FINISHED) 3.68/1.71 Propagated lower bound. 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (7) 3.68/1.71 BOUNDS(n^1, INF) 3.68/1.71 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (8) 3.68/1.71 Obligation: 3.68/1.71 Analyzing the following TRS for decreasing loops: 3.68/1.71 3.68/1.71 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.68/1.71 3.68/1.71 3.68/1.71 The TRS R consists of the following rules: 3.68/1.71 3.68/1.71 a__fib(N) -> a__sel(mark(N), a__fib1(s(0), s(0))) 3.68/1.71 a__fib1(X, Y) -> cons(mark(X), fib1(Y, add(X, Y))) 3.68/1.71 a__add(0, X) -> mark(X) 3.68/1.71 a__add(s(X), Y) -> s(a__add(mark(X), mark(Y))) 3.68/1.71 a__sel(0, cons(X, XS)) -> mark(X) 3.68/1.71 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.68/1.71 mark(fib(X)) -> a__fib(mark(X)) 3.68/1.71 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.68/1.71 mark(fib1(X1, X2)) -> a__fib1(mark(X1), mark(X2)) 3.68/1.71 mark(add(X1, X2)) -> a__add(mark(X1), mark(X2)) 3.68/1.71 mark(s(X)) -> s(mark(X)) 3.68/1.71 mark(0) -> 0 3.68/1.71 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.68/1.71 a__fib(X) -> fib(X) 3.68/1.71 a__sel(X1, X2) -> sel(X1, X2) 3.68/1.71 a__fib1(X1, X2) -> fib1(X1, X2) 3.68/1.71 a__add(X1, X2) -> add(X1, X2) 3.68/1.71 3.68/1.71 S is empty. 3.68/1.71 Rewrite Strategy: FULL 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (9) DecreasingLoopProof (FINISHED) 3.68/1.71 The following loop(s) give(s) rise to the lower bound EXP: 3.68/1.71 3.68/1.71 The rewrite sequence 3.68/1.71 3.68/1.71 mark(fib1(X1, X2)) ->^+ cons(mark(mark(X1)), fib1(mark(X2), add(mark(X1), mark(X2)))) 3.68/1.71 3.68/1.71 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.68/1.71 3.68/1.71 The pumping substitution is [X1 / fib1(X1, X2)]. 3.68/1.71 3.68/1.71 The result substitution is [ ]. 3.68/1.71 3.68/1.71 3.68/1.71 3.68/1.71 The rewrite sequence 3.68/1.71 3.68/1.71 mark(fib1(X1, X2)) ->^+ cons(mark(mark(X1)), fib1(mark(X2), add(mark(X1), mark(X2)))) 3.68/1.71 3.68/1.71 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1,0]. 3.68/1.71 3.68/1.71 The pumping substitution is [X1 / fib1(X1, X2)]. 3.68/1.71 3.68/1.71 The result substitution is [ ]. 3.68/1.71 3.68/1.71 3.68/1.71 3.68/1.71 3.68/1.71 ---------------------------------------- 3.68/1.71 3.68/1.71 (10) 3.68/1.71 BOUNDS(EXP, INF) 3.71/2.69 EOF