3.76/1.71 WORST_CASE(NON_POLY, ?) 3.76/1.72 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.76/1.72 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.76/1.72 3.76/1.72 3.76/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.72 3.76/1.72 (0) CpxTRS 3.76/1.72 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.76/1.72 (2) TRS for Loop Detection 3.76/1.72 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.76/1.72 (4) BEST 3.76/1.72 (5) proven lower bound 3.76/1.72 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.76/1.72 (7) BOUNDS(n^1, INF) 3.76/1.72 (8) TRS for Loop Detection 3.76/1.72 (9) DecreasingLoopProof [FINISHED, 24 ms] 3.76/1.72 (10) BOUNDS(EXP, INF) 3.76/1.72 3.76/1.72 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (0) 3.76/1.72 Obligation: 3.76/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.72 3.76/1.72 3.76/1.72 The TRS R consists of the following rules: 3.76/1.72 3.76/1.72 terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) 3.76/1.72 sqr(0) -> 0 3.76/1.72 sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X)))) 3.76/1.72 dbl(0) -> 0 3.76/1.72 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.76/1.72 add(0, X) -> X 3.76/1.72 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.76/1.72 first(0, X) -> nil 3.76/1.72 first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) 3.76/1.72 terms(X) -> n__terms(X) 3.76/1.72 s(X) -> n__s(X) 3.76/1.72 add(X1, X2) -> n__add(X1, X2) 3.76/1.72 sqr(X) -> n__sqr(X) 3.76/1.72 dbl(X) -> n__dbl(X) 3.76/1.72 first(X1, X2) -> n__first(X1, X2) 3.76/1.72 activate(n__terms(X)) -> terms(activate(X)) 3.76/1.72 activate(n__s(X)) -> s(X) 3.76/1.72 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.76/1.72 activate(n__sqr(X)) -> sqr(activate(X)) 3.76/1.72 activate(n__dbl(X)) -> dbl(activate(X)) 3.76/1.72 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 3.76/1.72 activate(X) -> X 3.76/1.72 3.76/1.72 S is empty. 3.76/1.72 Rewrite Strategy: FULL 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.76/1.72 Transformed a relative TRS into a decreasing-loop problem. 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (2) 3.76/1.72 Obligation: 3.76/1.72 Analyzing the following TRS for decreasing loops: 3.76/1.72 3.76/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.72 3.76/1.72 3.76/1.72 The TRS R consists of the following rules: 3.76/1.72 3.76/1.72 terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) 3.76/1.72 sqr(0) -> 0 3.76/1.72 sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X)))) 3.76/1.72 dbl(0) -> 0 3.76/1.72 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.76/1.72 add(0, X) -> X 3.76/1.72 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.76/1.72 first(0, X) -> nil 3.76/1.72 first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) 3.76/1.72 terms(X) -> n__terms(X) 3.76/1.72 s(X) -> n__s(X) 3.76/1.72 add(X1, X2) -> n__add(X1, X2) 3.76/1.72 sqr(X) -> n__sqr(X) 3.76/1.72 dbl(X) -> n__dbl(X) 3.76/1.72 first(X1, X2) -> n__first(X1, X2) 3.76/1.72 activate(n__terms(X)) -> terms(activate(X)) 3.76/1.72 activate(n__s(X)) -> s(X) 3.76/1.72 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.76/1.72 activate(n__sqr(X)) -> sqr(activate(X)) 3.76/1.72 activate(n__dbl(X)) -> dbl(activate(X)) 3.76/1.72 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 3.76/1.72 activate(X) -> X 3.76/1.72 3.76/1.72 S is empty. 3.76/1.72 Rewrite Strategy: FULL 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.76/1.72 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.76/1.72 3.76/1.72 The rewrite sequence 3.76/1.72 3.76/1.72 activate(n__add(X1, X2)) ->^+ add(activate(X1), activate(X2)) 3.76/1.72 3.76/1.72 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.76/1.72 3.76/1.72 The pumping substitution is [X1 / n__add(X1, X2)]. 3.76/1.72 3.76/1.72 The result substitution is [ ]. 3.76/1.72 3.76/1.72 3.76/1.72 3.76/1.72 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (4) 3.76/1.72 Complex Obligation (BEST) 3.76/1.72 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (5) 3.76/1.72 Obligation: 3.76/1.72 Proved the lower bound n^1 for the following obligation: 3.76/1.72 3.76/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.72 3.76/1.72 3.76/1.72 The TRS R consists of the following rules: 3.76/1.72 3.76/1.72 terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) 3.76/1.72 sqr(0) -> 0 3.76/1.72 sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X)))) 3.76/1.72 dbl(0) -> 0 3.76/1.72 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.76/1.72 add(0, X) -> X 3.76/1.72 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.76/1.72 first(0, X) -> nil 3.76/1.72 first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) 3.76/1.72 terms(X) -> n__terms(X) 3.76/1.72 s(X) -> n__s(X) 3.76/1.72 add(X1, X2) -> n__add(X1, X2) 3.76/1.72 sqr(X) -> n__sqr(X) 3.76/1.72 dbl(X) -> n__dbl(X) 3.76/1.72 first(X1, X2) -> n__first(X1, X2) 3.76/1.72 activate(n__terms(X)) -> terms(activate(X)) 3.76/1.72 activate(n__s(X)) -> s(X) 3.76/1.72 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.76/1.72 activate(n__sqr(X)) -> sqr(activate(X)) 3.76/1.72 activate(n__dbl(X)) -> dbl(activate(X)) 3.76/1.72 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 3.76/1.72 activate(X) -> X 3.76/1.72 3.76/1.72 S is empty. 3.76/1.72 Rewrite Strategy: FULL 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (6) LowerBoundPropagationProof (FINISHED) 3.76/1.72 Propagated lower bound. 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (7) 3.76/1.72 BOUNDS(n^1, INF) 3.76/1.72 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (8) 3.76/1.72 Obligation: 3.76/1.72 Analyzing the following TRS for decreasing loops: 3.76/1.72 3.76/1.72 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.72 3.76/1.72 3.76/1.72 The TRS R consists of the following rules: 3.76/1.72 3.76/1.72 terms(N) -> cons(recip(sqr(N)), n__terms(n__s(N))) 3.76/1.72 sqr(0) -> 0 3.76/1.72 sqr(s(X)) -> s(n__add(n__sqr(activate(X)), n__dbl(activate(X)))) 3.76/1.72 dbl(0) -> 0 3.76/1.72 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.76/1.72 add(0, X) -> X 3.76/1.72 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.76/1.72 first(0, X) -> nil 3.76/1.72 first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) 3.76/1.72 terms(X) -> n__terms(X) 3.76/1.72 s(X) -> n__s(X) 3.76/1.72 add(X1, X2) -> n__add(X1, X2) 3.76/1.72 sqr(X) -> n__sqr(X) 3.76/1.72 dbl(X) -> n__dbl(X) 3.76/1.72 first(X1, X2) -> n__first(X1, X2) 3.76/1.72 activate(n__terms(X)) -> terms(activate(X)) 3.76/1.72 activate(n__s(X)) -> s(X) 3.76/1.72 activate(n__add(X1, X2)) -> add(activate(X1), activate(X2)) 3.76/1.72 activate(n__sqr(X)) -> sqr(activate(X)) 3.76/1.72 activate(n__dbl(X)) -> dbl(activate(X)) 3.76/1.72 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 3.76/1.72 activate(X) -> X 3.76/1.72 3.76/1.72 S is empty. 3.76/1.72 Rewrite Strategy: FULL 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (9) DecreasingLoopProof (FINISHED) 3.76/1.72 The following loop(s) give(s) rise to the lower bound EXP: 3.76/1.72 3.76/1.72 The rewrite sequence 3.76/1.72 3.76/1.72 activate(n__terms(X)) ->^+ cons(recip(sqr(activate(X))), n__terms(n__s(activate(X)))) 3.76/1.72 3.76/1.72 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0]. 3.76/1.72 3.76/1.72 The pumping substitution is [X / n__terms(X)]. 3.76/1.72 3.76/1.72 The result substitution is [ ]. 3.76/1.72 3.76/1.72 3.76/1.72 3.76/1.72 The rewrite sequence 3.76/1.72 3.76/1.72 activate(n__terms(X)) ->^+ cons(recip(sqr(activate(X))), n__terms(n__s(activate(X)))) 3.76/1.72 3.76/1.72 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.76/1.72 3.76/1.72 The pumping substitution is [X / n__terms(X)]. 3.76/1.72 3.76/1.72 The result substitution is [ ]. 3.76/1.72 3.76/1.72 3.76/1.72 3.76/1.72 3.76/1.72 ---------------------------------------- 3.76/1.72 3.76/1.72 (10) 3.76/1.72 BOUNDS(EXP, INF) 4.00/1.77 EOF