3.76/1.83 WORST_CASE(NON_POLY, ?) 3.76/1.84 proof of /export/starexec/sandbox2/benchmark/theBenchmark.xml 3.76/1.84 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.76/1.84 3.76/1.84 3.76/1.84 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.84 3.76/1.84 (0) CpxTRS 3.76/1.84 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.76/1.84 (2) TRS for Loop Detection 3.76/1.84 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.76/1.84 (4) BEST 3.76/1.84 (5) proven lower bound 3.76/1.84 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.76/1.84 (7) BOUNDS(n^1, INF) 3.76/1.84 (8) TRS for Loop Detection 3.76/1.84 (9) DecreasingLoopProof [FINISHED, 70 ms] 3.76/1.84 (10) BOUNDS(EXP, INF) 3.76/1.84 3.76/1.84 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (0) 3.76/1.84 Obligation: 3.76/1.84 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.84 3.76/1.84 3.76/1.84 The TRS R consists of the following rules: 3.76/1.84 3.76/1.84 a__from(X) -> cons(mark(X), from(s(X))) 3.76/1.84 a__sel(0, cons(X, XS)) -> mark(X) 3.76/1.84 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.76/1.84 a__minus(X, 0) -> 0 3.76/1.84 a__minus(s(X), s(Y)) -> a__minus(mark(X), mark(Y)) 3.76/1.84 a__quot(0, s(Y)) -> 0 3.76/1.84 a__quot(s(X), s(Y)) -> s(a__quot(a__minus(mark(X), mark(Y)), s(mark(Y)))) 3.76/1.84 a__zWquot(XS, nil) -> nil 3.76/1.84 a__zWquot(nil, XS) -> nil 3.76/1.84 a__zWquot(cons(X, XS), cons(Y, YS)) -> cons(a__quot(mark(X), mark(Y)), zWquot(XS, YS)) 3.76/1.84 mark(from(X)) -> a__from(mark(X)) 3.76/1.84 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.76/1.84 mark(minus(X1, X2)) -> a__minus(mark(X1), mark(X2)) 3.76/1.84 mark(quot(X1, X2)) -> a__quot(mark(X1), mark(X2)) 3.76/1.84 mark(zWquot(X1, X2)) -> a__zWquot(mark(X1), mark(X2)) 3.76/1.84 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.76/1.84 mark(s(X)) -> s(mark(X)) 3.76/1.84 mark(0) -> 0 3.76/1.84 mark(nil) -> nil 3.76/1.84 a__from(X) -> from(X) 3.76/1.84 a__sel(X1, X2) -> sel(X1, X2) 3.76/1.84 a__minus(X1, X2) -> minus(X1, X2) 3.76/1.84 a__quot(X1, X2) -> quot(X1, X2) 3.76/1.84 a__zWquot(X1, X2) -> zWquot(X1, X2) 3.76/1.84 3.76/1.84 S is empty. 3.76/1.84 Rewrite Strategy: FULL 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.76/1.84 Transformed a relative TRS into a decreasing-loop problem. 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (2) 3.76/1.84 Obligation: 3.76/1.84 Analyzing the following TRS for decreasing loops: 3.76/1.84 3.76/1.84 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.84 3.76/1.84 3.76/1.84 The TRS R consists of the following rules: 3.76/1.84 3.76/1.84 a__from(X) -> cons(mark(X), from(s(X))) 3.76/1.84 a__sel(0, cons(X, XS)) -> mark(X) 3.76/1.84 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.76/1.84 a__minus(X, 0) -> 0 3.76/1.84 a__minus(s(X), s(Y)) -> a__minus(mark(X), mark(Y)) 3.76/1.84 a__quot(0, s(Y)) -> 0 3.76/1.84 a__quot(s(X), s(Y)) -> s(a__quot(a__minus(mark(X), mark(Y)), s(mark(Y)))) 3.76/1.84 a__zWquot(XS, nil) -> nil 3.76/1.84 a__zWquot(nil, XS) -> nil 3.76/1.84 a__zWquot(cons(X, XS), cons(Y, YS)) -> cons(a__quot(mark(X), mark(Y)), zWquot(XS, YS)) 3.76/1.84 mark(from(X)) -> a__from(mark(X)) 3.76/1.84 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.76/1.84 mark(minus(X1, X2)) -> a__minus(mark(X1), mark(X2)) 3.76/1.84 mark(quot(X1, X2)) -> a__quot(mark(X1), mark(X2)) 3.76/1.84 mark(zWquot(X1, X2)) -> a__zWquot(mark(X1), mark(X2)) 3.76/1.84 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.76/1.84 mark(s(X)) -> s(mark(X)) 3.76/1.84 mark(0) -> 0 3.76/1.84 mark(nil) -> nil 3.76/1.84 a__from(X) -> from(X) 3.76/1.84 a__sel(X1, X2) -> sel(X1, X2) 3.76/1.84 a__minus(X1, X2) -> minus(X1, X2) 3.76/1.84 a__quot(X1, X2) -> quot(X1, X2) 3.76/1.84 a__zWquot(X1, X2) -> zWquot(X1, X2) 3.76/1.84 3.76/1.84 S is empty. 3.76/1.84 Rewrite Strategy: FULL 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.76/1.84 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.76/1.84 3.76/1.84 The rewrite sequence 3.76/1.84 3.76/1.84 mark(from(X)) ->^+ a__from(mark(X)) 3.76/1.84 3.76/1.84 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.76/1.84 3.76/1.84 The pumping substitution is [X / from(X)]. 3.76/1.84 3.76/1.84 The result substitution is [ ]. 3.76/1.84 3.76/1.84 3.76/1.84 3.76/1.84 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (4) 3.76/1.84 Complex Obligation (BEST) 3.76/1.84 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (5) 3.76/1.84 Obligation: 3.76/1.84 Proved the lower bound n^1 for the following obligation: 3.76/1.84 3.76/1.84 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.84 3.76/1.84 3.76/1.84 The TRS R consists of the following rules: 3.76/1.84 3.76/1.84 a__from(X) -> cons(mark(X), from(s(X))) 3.76/1.84 a__sel(0, cons(X, XS)) -> mark(X) 3.76/1.84 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.76/1.84 a__minus(X, 0) -> 0 3.76/1.84 a__minus(s(X), s(Y)) -> a__minus(mark(X), mark(Y)) 3.76/1.84 a__quot(0, s(Y)) -> 0 3.76/1.84 a__quot(s(X), s(Y)) -> s(a__quot(a__minus(mark(X), mark(Y)), s(mark(Y)))) 3.76/1.84 a__zWquot(XS, nil) -> nil 3.76/1.84 a__zWquot(nil, XS) -> nil 3.76/1.84 a__zWquot(cons(X, XS), cons(Y, YS)) -> cons(a__quot(mark(X), mark(Y)), zWquot(XS, YS)) 3.76/1.84 mark(from(X)) -> a__from(mark(X)) 3.76/1.84 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.76/1.84 mark(minus(X1, X2)) -> a__minus(mark(X1), mark(X2)) 3.76/1.84 mark(quot(X1, X2)) -> a__quot(mark(X1), mark(X2)) 3.76/1.84 mark(zWquot(X1, X2)) -> a__zWquot(mark(X1), mark(X2)) 3.76/1.84 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.76/1.84 mark(s(X)) -> s(mark(X)) 3.76/1.84 mark(0) -> 0 3.76/1.84 mark(nil) -> nil 3.76/1.84 a__from(X) -> from(X) 3.76/1.84 a__sel(X1, X2) -> sel(X1, X2) 3.76/1.84 a__minus(X1, X2) -> minus(X1, X2) 3.76/1.84 a__quot(X1, X2) -> quot(X1, X2) 3.76/1.84 a__zWquot(X1, X2) -> zWquot(X1, X2) 3.76/1.84 3.76/1.84 S is empty. 3.76/1.84 Rewrite Strategy: FULL 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (6) LowerBoundPropagationProof (FINISHED) 3.76/1.84 Propagated lower bound. 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (7) 3.76/1.84 BOUNDS(n^1, INF) 3.76/1.84 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (8) 3.76/1.84 Obligation: 3.76/1.84 Analyzing the following TRS for decreasing loops: 3.76/1.84 3.76/1.84 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.76/1.84 3.76/1.84 3.76/1.84 The TRS R consists of the following rules: 3.76/1.84 3.76/1.84 a__from(X) -> cons(mark(X), from(s(X))) 3.76/1.84 a__sel(0, cons(X, XS)) -> mark(X) 3.76/1.84 a__sel(s(N), cons(X, XS)) -> a__sel(mark(N), mark(XS)) 3.76/1.84 a__minus(X, 0) -> 0 3.76/1.84 a__minus(s(X), s(Y)) -> a__minus(mark(X), mark(Y)) 3.76/1.84 a__quot(0, s(Y)) -> 0 3.76/1.84 a__quot(s(X), s(Y)) -> s(a__quot(a__minus(mark(X), mark(Y)), s(mark(Y)))) 3.76/1.84 a__zWquot(XS, nil) -> nil 3.76/1.84 a__zWquot(nil, XS) -> nil 3.76/1.84 a__zWquot(cons(X, XS), cons(Y, YS)) -> cons(a__quot(mark(X), mark(Y)), zWquot(XS, YS)) 3.76/1.84 mark(from(X)) -> a__from(mark(X)) 3.76/1.84 mark(sel(X1, X2)) -> a__sel(mark(X1), mark(X2)) 3.76/1.84 mark(minus(X1, X2)) -> a__minus(mark(X1), mark(X2)) 3.76/1.84 mark(quot(X1, X2)) -> a__quot(mark(X1), mark(X2)) 3.76/1.84 mark(zWquot(X1, X2)) -> a__zWquot(mark(X1), mark(X2)) 3.76/1.84 mark(cons(X1, X2)) -> cons(mark(X1), X2) 3.76/1.84 mark(s(X)) -> s(mark(X)) 3.76/1.84 mark(0) -> 0 3.76/1.84 mark(nil) -> nil 3.76/1.84 a__from(X) -> from(X) 3.76/1.84 a__sel(X1, X2) -> sel(X1, X2) 3.76/1.84 a__minus(X1, X2) -> minus(X1, X2) 3.76/1.84 a__quot(X1, X2) -> quot(X1, X2) 3.76/1.84 a__zWquot(X1, X2) -> zWquot(X1, X2) 3.76/1.84 3.76/1.84 S is empty. 3.76/1.84 Rewrite Strategy: FULL 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (9) DecreasingLoopProof (FINISHED) 3.76/1.84 The following loop(s) give(s) rise to the lower bound EXP: 3.76/1.84 3.76/1.84 The rewrite sequence 3.76/1.84 3.76/1.84 mark(from(X)) ->^+ cons(mark(mark(X)), from(s(mark(X)))) 3.76/1.84 3.76/1.84 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.76/1.84 3.76/1.84 The pumping substitution is [X / from(X)]. 3.76/1.84 3.76/1.84 The result substitution is [ ]. 3.76/1.84 3.76/1.84 3.76/1.84 3.76/1.84 The rewrite sequence 3.76/1.84 3.76/1.84 mark(from(X)) ->^+ cons(mark(mark(X)), from(s(mark(X)))) 3.76/1.84 3.76/1.84 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.76/1.84 3.76/1.84 The pumping substitution is [X / from(X)]. 3.76/1.84 3.76/1.84 The result substitution is [ ]. 3.76/1.84 3.76/1.84 3.76/1.84 3.76/1.84 3.76/1.84 ---------------------------------------- 3.76/1.84 3.76/1.84 (10) 3.76/1.84 BOUNDS(EXP, INF) 3.93/1.88 EOF