3.75/1.77 WORST_CASE(NON_POLY, ?) 3.75/1.78 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.75/1.78 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.75/1.78 3.75/1.78 3.75/1.78 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.75/1.78 3.75/1.78 (0) CpxTRS 3.75/1.78 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.75/1.78 (2) TRS for Loop Detection 3.75/1.78 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.75/1.78 (4) BEST 3.75/1.78 (5) proven lower bound 3.75/1.78 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.75/1.78 (7) BOUNDS(n^1, INF) 3.75/1.78 (8) TRS for Loop Detection 3.75/1.78 (9) DecreasingLoopProof [FINISHED, 105 ms] 3.75/1.78 (10) BOUNDS(EXP, INF) 3.75/1.78 3.75/1.78 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (0) 3.75/1.78 Obligation: 3.75/1.78 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.75/1.78 3.75/1.78 3.75/1.78 The TRS R consists of the following rules: 3.75/1.78 3.75/1.78 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 3.75/1.78 sel(0, cons(X, Z)) -> X 3.75/1.78 first(0, Z) -> nil 3.75/1.78 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 3.75/1.78 from(X) -> cons(X, n__from(n__s(X))) 3.75/1.78 sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z)) 3.75/1.78 sel1(0, cons(X, Z)) -> quote(X) 3.75/1.78 first1(0, Z) -> nil1 3.75/1.78 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z))) 3.75/1.78 quote(n__0) -> 01 3.75/1.78 quote1(n__cons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z))) 3.75/1.78 quote1(n__nil) -> nil1 3.75/1.78 quote(n__s(X)) -> s1(quote(activate(X))) 3.75/1.78 quote(n__sel(X, Z)) -> sel1(activate(X), activate(Z)) 3.75/1.78 quote1(n__first(X, Z)) -> first1(activate(X), activate(Z)) 3.75/1.78 unquote(01) -> 0 3.75/1.78 unquote(s1(X)) -> s(unquote(X)) 3.75/1.78 unquote1(nil1) -> nil 3.75/1.78 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 3.75/1.78 fcons(X, Z) -> cons(X, Z) 3.75/1.78 first(X1, X2) -> n__first(X1, X2) 3.75/1.78 from(X) -> n__from(X) 3.75/1.78 s(X) -> n__s(X) 3.75/1.78 0 -> n__0 3.75/1.78 cons(X1, X2) -> n__cons(X1, X2) 3.75/1.78 nil -> n__nil 3.75/1.78 sel(X1, X2) -> n__sel(X1, X2) 3.75/1.78 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 3.75/1.78 activate(n__from(X)) -> from(activate(X)) 3.75/1.78 activate(n__s(X)) -> s(activate(X)) 3.75/1.78 activate(n__0) -> 0 3.75/1.78 activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 3.75/1.78 activate(n__nil) -> nil 3.75/1.78 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 3.75/1.78 activate(X) -> X 3.75/1.78 3.75/1.78 S is empty. 3.75/1.78 Rewrite Strategy: FULL 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.75/1.78 Transformed a relative TRS into a decreasing-loop problem. 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (2) 3.75/1.78 Obligation: 3.75/1.78 Analyzing the following TRS for decreasing loops: 3.75/1.78 3.75/1.78 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.75/1.78 3.75/1.78 3.75/1.78 The TRS R consists of the following rules: 3.75/1.78 3.75/1.78 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 3.75/1.78 sel(0, cons(X, Z)) -> X 3.75/1.78 first(0, Z) -> nil 3.75/1.78 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 3.75/1.78 from(X) -> cons(X, n__from(n__s(X))) 3.75/1.78 sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z)) 3.75/1.78 sel1(0, cons(X, Z)) -> quote(X) 3.75/1.78 first1(0, Z) -> nil1 3.75/1.78 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z))) 3.75/1.78 quote(n__0) -> 01 3.75/1.78 quote1(n__cons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z))) 3.75/1.78 quote1(n__nil) -> nil1 3.75/1.78 quote(n__s(X)) -> s1(quote(activate(X))) 3.75/1.78 quote(n__sel(X, Z)) -> sel1(activate(X), activate(Z)) 3.75/1.78 quote1(n__first(X, Z)) -> first1(activate(X), activate(Z)) 3.75/1.78 unquote(01) -> 0 3.75/1.78 unquote(s1(X)) -> s(unquote(X)) 3.75/1.78 unquote1(nil1) -> nil 3.75/1.78 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 3.75/1.78 fcons(X, Z) -> cons(X, Z) 3.75/1.78 first(X1, X2) -> n__first(X1, X2) 3.75/1.78 from(X) -> n__from(X) 3.75/1.78 s(X) -> n__s(X) 3.75/1.78 0 -> n__0 3.75/1.78 cons(X1, X2) -> n__cons(X1, X2) 3.75/1.78 nil -> n__nil 3.75/1.78 sel(X1, X2) -> n__sel(X1, X2) 3.75/1.78 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 3.75/1.78 activate(n__from(X)) -> from(activate(X)) 3.75/1.78 activate(n__s(X)) -> s(activate(X)) 3.75/1.78 activate(n__0) -> 0 3.75/1.78 activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 3.75/1.78 activate(n__nil) -> nil 3.75/1.78 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 3.75/1.78 activate(X) -> X 3.75/1.78 3.75/1.78 S is empty. 3.75/1.78 Rewrite Strategy: FULL 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.75/1.78 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.75/1.78 3.75/1.78 The rewrite sequence 3.75/1.78 3.75/1.78 activate(n__s(X)) ->^+ s(activate(X)) 3.75/1.78 3.75/1.78 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.75/1.78 3.75/1.78 The pumping substitution is [X / n__s(X)]. 3.75/1.78 3.75/1.78 The result substitution is [ ]. 3.75/1.78 3.75/1.78 3.75/1.78 3.75/1.78 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (4) 3.75/1.78 Complex Obligation (BEST) 3.75/1.78 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (5) 3.75/1.78 Obligation: 3.75/1.78 Proved the lower bound n^1 for the following obligation: 3.75/1.78 3.75/1.78 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.75/1.78 3.75/1.78 3.75/1.78 The TRS R consists of the following rules: 3.75/1.78 3.75/1.78 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 3.75/1.78 sel(0, cons(X, Z)) -> X 3.75/1.78 first(0, Z) -> nil 3.75/1.78 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 3.75/1.78 from(X) -> cons(X, n__from(n__s(X))) 3.75/1.78 sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z)) 3.75/1.78 sel1(0, cons(X, Z)) -> quote(X) 3.75/1.78 first1(0, Z) -> nil1 3.75/1.78 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z))) 3.75/1.78 quote(n__0) -> 01 3.75/1.78 quote1(n__cons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z))) 3.75/1.78 quote1(n__nil) -> nil1 3.75/1.78 quote(n__s(X)) -> s1(quote(activate(X))) 3.75/1.78 quote(n__sel(X, Z)) -> sel1(activate(X), activate(Z)) 3.75/1.78 quote1(n__first(X, Z)) -> first1(activate(X), activate(Z)) 3.75/1.78 unquote(01) -> 0 3.75/1.78 unquote(s1(X)) -> s(unquote(X)) 3.75/1.78 unquote1(nil1) -> nil 3.75/1.78 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 3.75/1.78 fcons(X, Z) -> cons(X, Z) 3.75/1.78 first(X1, X2) -> n__first(X1, X2) 3.75/1.78 from(X) -> n__from(X) 3.75/1.78 s(X) -> n__s(X) 3.75/1.78 0 -> n__0 3.75/1.78 cons(X1, X2) -> n__cons(X1, X2) 3.75/1.78 nil -> n__nil 3.75/1.78 sel(X1, X2) -> n__sel(X1, X2) 3.75/1.78 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 3.75/1.78 activate(n__from(X)) -> from(activate(X)) 3.75/1.78 activate(n__s(X)) -> s(activate(X)) 3.75/1.78 activate(n__0) -> 0 3.75/1.78 activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 3.75/1.78 activate(n__nil) -> nil 3.75/1.78 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 3.75/1.78 activate(X) -> X 3.75/1.78 3.75/1.78 S is empty. 3.75/1.78 Rewrite Strategy: FULL 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (6) LowerBoundPropagationProof (FINISHED) 3.75/1.78 Propagated lower bound. 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (7) 3.75/1.78 BOUNDS(n^1, INF) 3.75/1.78 3.75/1.78 ---------------------------------------- 3.75/1.78 3.75/1.78 (8) 3.75/1.78 Obligation: 3.75/1.78 Analyzing the following TRS for decreasing loops: 3.75/1.78 3.75/1.78 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.75/1.78 3.75/1.78 3.75/1.78 The TRS R consists of the following rules: 3.75/1.78 3.75/1.78 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 3.75/1.78 sel(0, cons(X, Z)) -> X 3.75/1.78 first(0, Z) -> nil 3.75/1.78 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 3.75/1.78 from(X) -> cons(X, n__from(n__s(X))) 3.75/1.78 sel1(s(X), cons(Y, Z)) -> sel1(X, activate(Z)) 3.75/1.78 sel1(0, cons(X, Z)) -> quote(X) 3.75/1.78 first1(0, Z) -> nil1 3.75/1.78 first1(s(X), cons(Y, Z)) -> cons1(quote(Y), first1(X, activate(Z))) 3.75/1.78 quote(n__0) -> 01 3.75/1.78 quote1(n__cons(X, Z)) -> cons1(quote(activate(X)), quote1(activate(Z))) 3.75/1.78 quote1(n__nil) -> nil1 3.75/1.78 quote(n__s(X)) -> s1(quote(activate(X))) 3.75/1.78 quote(n__sel(X, Z)) -> sel1(activate(X), activate(Z)) 3.75/1.78 quote1(n__first(X, Z)) -> first1(activate(X), activate(Z)) 4.07/1.78 unquote(01) -> 0 4.07/1.78 unquote(s1(X)) -> s(unquote(X)) 4.07/1.78 unquote1(nil1) -> nil 4.07/1.78 unquote1(cons1(X, Z)) -> fcons(unquote(X), unquote1(Z)) 4.07/1.78 fcons(X, Z) -> cons(X, Z) 4.07/1.78 first(X1, X2) -> n__first(X1, X2) 4.07/1.78 from(X) -> n__from(X) 4.07/1.78 s(X) -> n__s(X) 4.07/1.78 0 -> n__0 4.07/1.78 cons(X1, X2) -> n__cons(X1, X2) 4.07/1.78 nil -> n__nil 4.07/1.78 sel(X1, X2) -> n__sel(X1, X2) 4.07/1.78 activate(n__first(X1, X2)) -> first(activate(X1), activate(X2)) 4.07/1.78 activate(n__from(X)) -> from(activate(X)) 4.07/1.78 activate(n__s(X)) -> s(activate(X)) 4.07/1.78 activate(n__0) -> 0 4.07/1.78 activate(n__cons(X1, X2)) -> cons(activate(X1), X2) 4.07/1.78 activate(n__nil) -> nil 4.07/1.78 activate(n__sel(X1, X2)) -> sel(activate(X1), activate(X2)) 4.07/1.78 activate(X) -> X 4.07/1.78 4.07/1.78 S is empty. 4.07/1.78 Rewrite Strategy: FULL 4.07/1.78 ---------------------------------------- 4.07/1.78 4.07/1.78 (9) DecreasingLoopProof (FINISHED) 4.07/1.78 The following loop(s) give(s) rise to the lower bound EXP: 4.07/1.78 4.07/1.78 The rewrite sequence 4.07/1.78 4.07/1.78 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 4.07/1.78 4.07/1.78 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 4.07/1.78 4.07/1.78 The pumping substitution is [X / n__from(X)]. 4.07/1.78 4.07/1.78 The result substitution is [ ]. 4.07/1.78 4.07/1.78 4.07/1.78 4.07/1.78 The rewrite sequence 4.07/1.78 4.07/1.78 activate(n__from(X)) ->^+ cons(activate(X), n__from(n__s(activate(X)))) 4.07/1.78 4.07/1.78 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 4.07/1.78 4.07/1.78 The pumping substitution is [X / n__from(X)]. 4.07/1.78 4.07/1.78 The result substitution is [ ]. 4.07/1.78 4.07/1.78 4.07/1.78 4.07/1.78 4.07/1.78 ---------------------------------------- 4.07/1.78 4.07/1.78 (10) 4.07/1.78 BOUNDS(EXP, INF) 4.07/1.82 EOF