3.78/1.73 WORST_CASE(NON_POLY, ?) 3.78/1.73 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.78/1.73 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.78/1.73 3.78/1.73 3.78/1.73 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.73 3.78/1.73 (0) CpxTRS 3.78/1.73 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.78/1.73 (2) TRS for Loop Detection 3.78/1.73 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.78/1.73 (4) BEST 3.78/1.73 (5) proven lower bound 3.78/1.73 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.78/1.73 (7) BOUNDS(n^1, INF) 3.78/1.73 (8) TRS for Loop Detection 3.78/1.73 (9) DecreasingLoopProof [FINISHED, 19 ms] 3.78/1.73 (10) BOUNDS(EXP, INF) 3.78/1.73 3.78/1.73 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (0) 3.78/1.73 Obligation: 3.78/1.73 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.73 3.78/1.73 3.78/1.73 The TRS R consists of the following rules: 3.78/1.73 3.78/1.73 a__p(0) -> 0 3.78/1.73 a__p(s(X)) -> mark(X) 3.78/1.73 a__leq(0, Y) -> true 3.78/1.73 a__leq(s(X), 0) -> false 3.78/1.73 a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) 3.78/1.73 a__if(true, X, Y) -> mark(X) 3.78/1.73 a__if(false, X, Y) -> mark(Y) 3.78/1.73 a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0, s(diff(p(X), Y))) 3.78/1.73 mark(p(X)) -> a__p(mark(X)) 3.78/1.73 mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) 3.78/1.73 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.78/1.73 mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) 3.78/1.73 mark(0) -> 0 3.78/1.73 mark(s(X)) -> s(mark(X)) 3.78/1.73 mark(true) -> true 3.78/1.73 mark(false) -> false 3.78/1.73 a__p(X) -> p(X) 3.78/1.73 a__leq(X1, X2) -> leq(X1, X2) 3.78/1.73 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.78/1.73 a__diff(X1, X2) -> diff(X1, X2) 3.78/1.73 3.78/1.73 S is empty. 3.78/1.73 Rewrite Strategy: FULL 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.78/1.73 Transformed a relative TRS into a decreasing-loop problem. 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (2) 3.78/1.73 Obligation: 3.78/1.73 Analyzing the following TRS for decreasing loops: 3.78/1.73 3.78/1.73 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.73 3.78/1.73 3.78/1.73 The TRS R consists of the following rules: 3.78/1.73 3.78/1.73 a__p(0) -> 0 3.78/1.73 a__p(s(X)) -> mark(X) 3.78/1.73 a__leq(0, Y) -> true 3.78/1.73 a__leq(s(X), 0) -> false 3.78/1.73 a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) 3.78/1.73 a__if(true, X, Y) -> mark(X) 3.78/1.73 a__if(false, X, Y) -> mark(Y) 3.78/1.73 a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0, s(diff(p(X), Y))) 3.78/1.73 mark(p(X)) -> a__p(mark(X)) 3.78/1.73 mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) 3.78/1.73 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.78/1.73 mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) 3.78/1.73 mark(0) -> 0 3.78/1.73 mark(s(X)) -> s(mark(X)) 3.78/1.73 mark(true) -> true 3.78/1.73 mark(false) -> false 3.78/1.73 a__p(X) -> p(X) 3.78/1.73 a__leq(X1, X2) -> leq(X1, X2) 3.78/1.73 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.78/1.73 a__diff(X1, X2) -> diff(X1, X2) 3.78/1.73 3.78/1.73 S is empty. 3.78/1.73 Rewrite Strategy: FULL 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.78/1.73 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.78/1.73 3.78/1.73 The rewrite sequence 3.78/1.73 3.78/1.73 mark(diff(X1, X2)) ->^+ a__diff(mark(X1), mark(X2)) 3.78/1.73 3.78/1.73 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.78/1.73 3.78/1.73 The pumping substitution is [X1 / diff(X1, X2)]. 3.78/1.73 3.78/1.73 The result substitution is [ ]. 3.78/1.73 3.78/1.73 3.78/1.73 3.78/1.73 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (4) 3.78/1.73 Complex Obligation (BEST) 3.78/1.73 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (5) 3.78/1.73 Obligation: 3.78/1.73 Proved the lower bound n^1 for the following obligation: 3.78/1.73 3.78/1.73 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.73 3.78/1.73 3.78/1.73 The TRS R consists of the following rules: 3.78/1.73 3.78/1.73 a__p(0) -> 0 3.78/1.73 a__p(s(X)) -> mark(X) 3.78/1.73 a__leq(0, Y) -> true 3.78/1.73 a__leq(s(X), 0) -> false 3.78/1.73 a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) 3.78/1.73 a__if(true, X, Y) -> mark(X) 3.78/1.73 a__if(false, X, Y) -> mark(Y) 3.78/1.73 a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0, s(diff(p(X), Y))) 3.78/1.73 mark(p(X)) -> a__p(mark(X)) 3.78/1.73 mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) 3.78/1.73 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.78/1.73 mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) 3.78/1.73 mark(0) -> 0 3.78/1.73 mark(s(X)) -> s(mark(X)) 3.78/1.73 mark(true) -> true 3.78/1.73 mark(false) -> false 3.78/1.73 a__p(X) -> p(X) 3.78/1.73 a__leq(X1, X2) -> leq(X1, X2) 3.78/1.73 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.78/1.73 a__diff(X1, X2) -> diff(X1, X2) 3.78/1.73 3.78/1.73 S is empty. 3.78/1.73 Rewrite Strategy: FULL 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (6) LowerBoundPropagationProof (FINISHED) 3.78/1.73 Propagated lower bound. 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (7) 3.78/1.73 BOUNDS(n^1, INF) 3.78/1.73 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (8) 3.78/1.73 Obligation: 3.78/1.73 Analyzing the following TRS for decreasing loops: 3.78/1.73 3.78/1.73 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.78/1.73 3.78/1.73 3.78/1.73 The TRS R consists of the following rules: 3.78/1.73 3.78/1.73 a__p(0) -> 0 3.78/1.73 a__p(s(X)) -> mark(X) 3.78/1.73 a__leq(0, Y) -> true 3.78/1.73 a__leq(s(X), 0) -> false 3.78/1.73 a__leq(s(X), s(Y)) -> a__leq(mark(X), mark(Y)) 3.78/1.73 a__if(true, X, Y) -> mark(X) 3.78/1.73 a__if(false, X, Y) -> mark(Y) 3.78/1.73 a__diff(X, Y) -> a__if(a__leq(mark(X), mark(Y)), 0, s(diff(p(X), Y))) 3.78/1.73 mark(p(X)) -> a__p(mark(X)) 3.78/1.73 mark(leq(X1, X2)) -> a__leq(mark(X1), mark(X2)) 3.78/1.73 mark(if(X1, X2, X3)) -> a__if(mark(X1), X2, X3) 3.78/1.73 mark(diff(X1, X2)) -> a__diff(mark(X1), mark(X2)) 3.78/1.73 mark(0) -> 0 3.78/1.73 mark(s(X)) -> s(mark(X)) 3.78/1.73 mark(true) -> true 3.78/1.73 mark(false) -> false 3.78/1.73 a__p(X) -> p(X) 3.78/1.73 a__leq(X1, X2) -> leq(X1, X2) 3.78/1.73 a__if(X1, X2, X3) -> if(X1, X2, X3) 3.78/1.73 a__diff(X1, X2) -> diff(X1, X2) 3.78/1.73 3.78/1.73 S is empty. 3.78/1.73 Rewrite Strategy: FULL 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (9) DecreasingLoopProof (FINISHED) 3.78/1.73 The following loop(s) give(s) rise to the lower bound EXP: 3.78/1.73 3.78/1.73 The rewrite sequence 3.78/1.73 3.78/1.73 mark(diff(X1, X2)) ->^+ a__if(a__leq(mark(mark(X1)), mark(mark(X2))), 0, s(diff(p(mark(X1)), mark(X2)))) 3.78/1.73 3.78/1.73 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0]. 3.78/1.73 3.78/1.73 The pumping substitution is [X1 / diff(X1, X2)]. 3.78/1.73 3.78/1.73 The result substitution is [ ]. 3.78/1.73 3.78/1.73 3.78/1.73 3.78/1.73 The rewrite sequence 3.78/1.73 3.78/1.73 mark(diff(X1, X2)) ->^+ a__if(a__leq(mark(mark(X1)), mark(mark(X2))), 0, s(diff(p(mark(X1)), mark(X2)))) 3.78/1.73 3.78/1.73 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,0,0,0]. 3.78/1.73 3.78/1.73 The pumping substitution is [X1 / diff(X1, X2)]. 3.78/1.73 3.78/1.73 The result substitution is [ ]. 3.78/1.73 3.78/1.73 3.78/1.73 3.78/1.73 3.78/1.73 ---------------------------------------- 3.78/1.73 3.78/1.73 (10) 3.78/1.73 BOUNDS(EXP, INF) 3.91/1.75 EOF