3.98/1.78 WORST_CASE(Omega(n^1), O(n^1)) 3.98/1.79 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.98/1.79 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.98/1.79 3.98/1.79 3.98/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.98/1.79 3.98/1.79 (0) CpxTRS 3.98/1.79 (1) RelTrsToTrsProof [UPPER BOUND(ID), 0 ms] 3.98/1.79 (2) CpxTRS 3.98/1.79 (3) CpxTrsMatchBoundsTAProof [FINISHED, 83 ms] 3.98/1.79 (4) BOUNDS(1, n^1) 3.98/1.79 (5) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.98/1.79 (6) TRS for Loop Detection 3.98/1.79 (7) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.98/1.79 (8) BEST 3.98/1.79 (9) proven lower bound 3.98/1.79 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 3.98/1.79 (11) BOUNDS(n^1, INF) 3.98/1.79 (12) TRS for Loop Detection 3.98/1.79 3.98/1.79 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (0) 3.98/1.79 Obligation: 3.98/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.98/1.79 3.98/1.79 3.98/1.79 The TRS R consists of the following rules: 3.98/1.79 3.98/1.79 f(X) -> if(X, c, n__f(n__true)) 3.98/1.79 if(true, X, Y) -> X 3.98/1.79 if(false, X, Y) -> activate(Y) 3.98/1.79 f(X) -> n__f(X) 3.98/1.79 true -> n__true 3.98/1.79 activate(n__f(X)) -> f(activate(X)) 3.98/1.79 activate(n__true) -> true 3.98/1.79 activate(X) -> X 3.98/1.79 3.98/1.79 S is empty. 3.98/1.79 Rewrite Strategy: FULL 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (1) RelTrsToTrsProof (UPPER BOUND(ID)) 3.98/1.79 transformed relative TRS to TRS 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (2) 3.98/1.79 Obligation: 3.98/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, n^1). 3.98/1.79 3.98/1.79 3.98/1.79 The TRS R consists of the following rules: 3.98/1.79 3.98/1.79 f(X) -> if(X, c, n__f(n__true)) 3.98/1.79 if(true, X, Y) -> X 3.98/1.79 if(false, X, Y) -> activate(Y) 3.98/1.79 f(X) -> n__f(X) 3.98/1.79 true -> n__true 3.98/1.79 activate(n__f(X)) -> f(activate(X)) 3.98/1.79 activate(n__true) -> true 3.98/1.79 activate(X) -> X 3.98/1.79 3.98/1.79 S is empty. 3.98/1.79 Rewrite Strategy: FULL 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (3) CpxTrsMatchBoundsTAProof (FINISHED) 3.98/1.79 A linear upper bound on the runtime complexity of the TRS R could be shown with a Match-Bound[TAB_LEFTLINEAR,TAB_NONLEFTLINEAR] (for contructor-based start-terms) of 4. 3.98/1.79 3.98/1.79 The compatible tree automaton used to show the Match-Boundedness (for constructor-based start-terms) is represented by: 3.98/1.79 final states : [1, 2, 3, 4] 3.98/1.79 transitions: 3.98/1.79 c0() -> 0 3.98/1.79 n__f0(0) -> 0 3.98/1.79 n__true0() -> 0 3.98/1.79 false0() -> 0 3.98/1.79 f0(0) -> 1 3.98/1.79 if0(0, 0, 0) -> 2 3.98/1.79 true0() -> 3 3.98/1.79 activate0(0) -> 4 3.98/1.79 c1() -> 5 3.98/1.79 n__true1() -> 7 3.98/1.79 n__f1(7) -> 6 3.98/1.79 if1(0, 5, 6) -> 1 3.98/1.79 activate1(0) -> 2 3.98/1.79 n__f1(0) -> 1 3.98/1.79 n__true1() -> 3 3.98/1.79 activate1(0) -> 8 3.98/1.79 f1(8) -> 4 3.98/1.79 true1() -> 4 3.98/1.79 c2() -> 9 3.98/1.79 n__true2() -> 11 3.98/1.79 n__f2(11) -> 10 3.98/1.79 if2(8, 9, 10) -> 4 3.98/1.79 activate1(6) -> 1 3.98/1.79 n__f2(8) -> 4 3.98/1.79 n__true2() -> 4 3.98/1.79 f1(8) -> 2 3.98/1.79 f1(8) -> 8 3.98/1.79 true1() -> 2 3.98/1.79 true1() -> 8 3.98/1.79 if2(8, 9, 10) -> 2 3.98/1.79 if2(8, 9, 10) -> 8 3.98/1.79 n__f2(8) -> 2 3.98/1.79 n__f2(8) -> 8 3.98/1.79 n__true2() -> 2 3.98/1.79 n__true2() -> 8 3.98/1.79 activate2(7) -> 12 3.98/1.79 f2(12) -> 1 3.98/1.79 activate1(10) -> 4 3.98/1.79 activate1(10) -> 2 3.98/1.79 activate1(10) -> 8 3.98/1.79 activate2(11) -> 12 3.98/1.79 f2(12) -> 4 3.98/1.79 c3() -> 13 3.98/1.79 n__true3() -> 15 3.98/1.79 n__f3(15) -> 14 3.98/1.79 if3(12, 13, 14) -> 1 3.98/1.79 n__f3(12) -> 1 3.98/1.79 true2() -> 12 3.98/1.79 f2(12) -> 2 3.98/1.79 f2(12) -> 8 3.98/1.79 if3(12, 13, 14) -> 4 3.98/1.79 n__f3(12) -> 4 3.98/1.79 true3() -> 12 3.98/1.79 n__true3() -> 12 3.98/1.79 if3(12, 13, 14) -> 2 3.98/1.79 if3(12, 13, 14) -> 8 3.98/1.79 n__f3(12) -> 2 3.98/1.79 n__f3(12) -> 8 3.98/1.79 n__true4() -> 12 3.98/1.79 0 -> 4 3.98/1.79 0 -> 2 3.98/1.79 0 -> 8 3.98/1.79 6 -> 1 3.98/1.79 9 -> 4 3.98/1.79 9 -> 2 3.98/1.79 9 -> 8 3.98/1.79 10 -> 4 3.98/1.79 10 -> 2 3.98/1.79 10 -> 8 3.98/1.79 7 -> 12 3.98/1.79 11 -> 12 3.98/1.79 13 -> 1 3.98/1.79 13 -> 4 3.98/1.79 13 -> 2 3.98/1.79 13 -> 8 3.98/1.79 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (4) 3.98/1.79 BOUNDS(1, n^1) 3.98/1.79 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (5) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.98/1.79 Transformed a relative TRS into a decreasing-loop problem. 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (6) 3.98/1.79 Obligation: 3.98/1.79 Analyzing the following TRS for decreasing loops: 3.98/1.79 3.98/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.98/1.79 3.98/1.79 3.98/1.79 The TRS R consists of the following rules: 3.98/1.79 3.98/1.79 f(X) -> if(X, c, n__f(n__true)) 3.98/1.79 if(true, X, Y) -> X 3.98/1.79 if(false, X, Y) -> activate(Y) 3.98/1.79 f(X) -> n__f(X) 3.98/1.79 true -> n__true 3.98/1.79 activate(n__f(X)) -> f(activate(X)) 3.98/1.79 activate(n__true) -> true 3.98/1.79 activate(X) -> X 3.98/1.79 3.98/1.79 S is empty. 3.98/1.79 Rewrite Strategy: FULL 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (7) DecreasingLoopProof (LOWER BOUND(ID)) 3.98/1.79 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.98/1.79 3.98/1.79 The rewrite sequence 3.98/1.79 3.98/1.79 activate(n__f(X)) ->^+ f(activate(X)) 3.98/1.79 3.98/1.79 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.98/1.79 3.98/1.79 The pumping substitution is [X / n__f(X)]. 3.98/1.79 3.98/1.79 The result substitution is [ ]. 3.98/1.79 3.98/1.79 3.98/1.79 3.98/1.79 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (8) 3.98/1.79 Complex Obligation (BEST) 3.98/1.79 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (9) 3.98/1.79 Obligation: 3.98/1.79 Proved the lower bound n^1 for the following obligation: 3.98/1.79 3.98/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.98/1.79 3.98/1.79 3.98/1.79 The TRS R consists of the following rules: 3.98/1.79 3.98/1.79 f(X) -> if(X, c, n__f(n__true)) 3.98/1.79 if(true, X, Y) -> X 3.98/1.79 if(false, X, Y) -> activate(Y) 3.98/1.79 f(X) -> n__f(X) 3.98/1.79 true -> n__true 3.98/1.79 activate(n__f(X)) -> f(activate(X)) 3.98/1.79 activate(n__true) -> true 3.98/1.79 activate(X) -> X 3.98/1.79 3.98/1.79 S is empty. 3.98/1.79 Rewrite Strategy: FULL 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (10) LowerBoundPropagationProof (FINISHED) 3.98/1.79 Propagated lower bound. 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (11) 3.98/1.79 BOUNDS(n^1, INF) 3.98/1.79 3.98/1.79 ---------------------------------------- 3.98/1.79 3.98/1.79 (12) 3.98/1.79 Obligation: 3.98/1.79 Analyzing the following TRS for decreasing loops: 3.98/1.79 3.98/1.79 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, n^1). 3.98/1.79 3.98/1.79 3.98/1.79 The TRS R consists of the following rules: 3.98/1.79 3.98/1.79 f(X) -> if(X, c, n__f(n__true)) 3.98/1.79 if(true, X, Y) -> X 3.98/1.79 if(false, X, Y) -> activate(Y) 3.98/1.79 f(X) -> n__f(X) 3.98/1.79 true -> n__true 3.98/1.79 activate(n__f(X)) -> f(activate(X)) 3.98/1.79 activate(n__true) -> true 3.98/1.79 activate(X) -> X 3.98/1.79 3.98/1.79 S is empty. 3.98/1.79 Rewrite Strategy: FULL 4.06/1.83 EOF