3.49/1.64 WORST_CASE(?, O(1)) 3.49/1.64 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.49/1.64 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.49/1.64 3.49/1.64 3.49/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, 1). 3.49/1.64 3.49/1.64 (0) CpxTRS 3.49/1.64 (1) NestedDefinedSymbolProof [UPPER BOUND(ID), 0 ms] 3.49/1.64 (2) CpxTRS 3.49/1.64 (3) NarrowingOnBasicTermsTerminatesProof [FINISHED, 13 ms] 3.49/1.64 (4) BOUNDS(1, 1) 3.49/1.64 3.49/1.64 3.49/1.64 ---------------------------------------- 3.49/1.64 3.49/1.64 (0) 3.49/1.64 Obligation: 3.49/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, 1). 3.49/1.64 3.49/1.64 3.49/1.64 The TRS R consists of the following rules: 3.49/1.64 3.49/1.64 terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) 3.49/1.64 sqr(0) -> 0 3.49/1.64 sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) 3.49/1.64 dbl(0) -> 0 3.49/1.64 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.49/1.64 add(0, X) -> X 3.49/1.64 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.49/1.64 first(0, X) -> nil 3.49/1.64 first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) 3.49/1.64 terms(X) -> n__terms(X) 3.49/1.64 add(X1, X2) -> n__add(X1, X2) 3.49/1.64 s(X) -> n__s(X) 3.49/1.64 dbl(X) -> n__dbl(X) 3.49/1.64 first(X1, X2) -> n__first(X1, X2) 3.49/1.64 activate(n__terms(X)) -> terms(X) 3.49/1.64 activate(n__add(X1, X2)) -> add(X1, X2) 3.49/1.64 activate(n__s(X)) -> s(X) 3.49/1.64 activate(n__dbl(X)) -> dbl(X) 3.49/1.64 activate(n__first(X1, X2)) -> first(X1, X2) 3.49/1.64 activate(X) -> X 3.49/1.64 3.49/1.64 S is empty. 3.49/1.64 Rewrite Strategy: FULL 3.49/1.64 ---------------------------------------- 3.49/1.64 3.49/1.64 (1) NestedDefinedSymbolProof (UPPER BOUND(ID)) 3.49/1.64 The TRS does not nest defined symbols. 3.49/1.64 Hence, the left-hand sides of the following rules are not basic-reachable and can be removed: 3.49/1.64 sqr(s(X)) -> s(n__add(sqr(activate(X)), dbl(activate(X)))) 3.49/1.64 dbl(s(X)) -> s(n__s(n__dbl(activate(X)))) 3.49/1.64 add(s(X), Y) -> s(n__add(activate(X), Y)) 3.49/1.64 first(s(X), cons(Y, Z)) -> cons(Y, n__first(activate(X), activate(Z))) 3.49/1.64 3.49/1.64 ---------------------------------------- 3.49/1.64 3.49/1.64 (2) 3.49/1.64 Obligation: 3.49/1.64 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(1, 1). 3.49/1.64 3.49/1.64 3.49/1.64 The TRS R consists of the following rules: 3.49/1.64 3.49/1.64 terms(N) -> cons(recip(sqr(N)), n__terms(s(N))) 3.49/1.64 sqr(0) -> 0 3.49/1.64 dbl(0) -> 0 3.49/1.64 add(0, X) -> X 3.49/1.64 first(0, X) -> nil 3.49/1.64 terms(X) -> n__terms(X) 3.49/1.64 add(X1, X2) -> n__add(X1, X2) 3.49/1.64 s(X) -> n__s(X) 3.49/1.64 dbl(X) -> n__dbl(X) 3.49/1.64 first(X1, X2) -> n__first(X1, X2) 3.49/1.64 activate(n__terms(X)) -> terms(X) 3.49/1.64 activate(n__add(X1, X2)) -> add(X1, X2) 3.49/1.64 activate(n__s(X)) -> s(X) 3.49/1.64 activate(n__dbl(X)) -> dbl(X) 3.49/1.64 activate(n__first(X1, X2)) -> first(X1, X2) 3.49/1.64 activate(X) -> X 3.49/1.64 3.49/1.64 S is empty. 3.49/1.64 Rewrite Strategy: FULL 3.49/1.64 ---------------------------------------- 3.49/1.64 3.49/1.64 (3) NarrowingOnBasicTermsTerminatesProof (FINISHED) 3.49/1.64 Constant runtime complexity proven by termination of constructor-based narrowing. 3.49/1.64 3.49/1.64 The maximal most general narrowing sequences give rise to the following rewrite sequences: 3.49/1.64 3.49/1.64 activate(n__first(x0, x1)) ->^* n__first(x0, x1) 3.49/1.64 3.49/1.64 activate(n__first(0, x0)) ->^* nil 3.49/1.64 3.49/1.64 activate(n__dbl(x0)) ->^* n__dbl(x0) 3.49/1.64 3.49/1.64 activate(n__dbl(0)) ->^* 0 3.49/1.64 3.49/1.64 activate(n__s(x0)) ->^* n__s(x0) 3.49/1.64 3.49/1.64 activate(n__add(x0, x1)) ->^* n__add(x0, x1) 3.49/1.64 3.49/1.64 activate(n__terms(x0)) ->^* n__terms(x0) 3.49/1.64 3.49/1.64 activate(n__terms(0)) ->^* cons(recip(0), n__terms(n__s(0))) 3.49/1.64 3.49/1.64 first(x0, x1) ->^* n__first(x0, x1) 3.49/1.64 3.49/1.64 first(0, x0) ->^* nil 3.49/1.64 3.49/1.64 dbl(x0) ->^* n__dbl(x0) 3.49/1.64 3.49/1.64 dbl(0) ->^* 0 3.49/1.64 3.49/1.64 add(x0, x1) ->^* n__add(x0, x1) 3.49/1.64 3.49/1.64 terms(x0) ->^* n__terms(x0) 3.49/1.64 3.49/1.64 terms(0) ->^* cons(recip(0), n__terms(n__s(0))) 3.49/1.64 3.49/1.64 sqr(0) ->^* 0 3.49/1.64 3.49/1.64 s(x0) ->^* n__s(x0) 3.49/1.64 3.49/1.64 3.49/1.64 3.49/1.64 3.49/1.64 ---------------------------------------- 3.49/1.64 3.49/1.64 (4) 3.49/1.64 BOUNDS(1, 1) 3.49/1.67 EOF