3.52/1.64 WORST_CASE(NON_POLY, ?) 3.52/1.65 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.52/1.65 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.52/1.65 3.52/1.65 3.52/1.65 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.65 3.52/1.65 (0) CpxTRS 3.52/1.65 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.52/1.65 (2) TRS for Loop Detection 3.52/1.65 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.52/1.65 (4) BEST 3.52/1.65 (5) proven lower bound 3.52/1.65 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.52/1.65 (7) BOUNDS(n^1, INF) 3.52/1.65 (8) TRS for Loop Detection 3.52/1.65 (9) DecreasingLoopProof [FINISHED, 34 ms] 3.52/1.65 (10) BOUNDS(EXP, INF) 3.52/1.65 3.52/1.65 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (0) 3.52/1.65 Obligation: 3.52/1.65 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.65 3.52/1.65 3.52/1.65 The TRS R consists of the following rules: 3.52/1.65 3.52/1.65 p(0) -> 0 3.52/1.65 p(s(X)) -> X 3.52/1.65 leq(0, Y) -> true 3.52/1.65 leq(s(X), 0) -> false 3.52/1.65 leq(s(X), s(Y)) -> leq(X, Y) 3.52/1.65 if(true, X, Y) -> activate(X) 3.52/1.65 if(false, X, Y) -> activate(Y) 3.52/1.65 diff(X, Y) -> if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) 3.52/1.65 0 -> n__0 3.52/1.65 s(X) -> n__s(X) 3.52/1.65 diff(X1, X2) -> n__diff(X1, X2) 3.52/1.65 p(X) -> n__p(X) 3.52/1.65 activate(n__0) -> 0 3.52/1.65 activate(n__s(X)) -> s(activate(X)) 3.52/1.65 activate(n__diff(X1, X2)) -> diff(activate(X1), activate(X2)) 3.52/1.65 activate(n__p(X)) -> p(activate(X)) 3.52/1.65 activate(X) -> X 3.52/1.65 3.52/1.65 S is empty. 3.52/1.65 Rewrite Strategy: FULL 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.52/1.65 Transformed a relative TRS into a decreasing-loop problem. 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (2) 3.52/1.65 Obligation: 3.52/1.65 Analyzing the following TRS for decreasing loops: 3.52/1.65 3.52/1.65 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.65 3.52/1.65 3.52/1.65 The TRS R consists of the following rules: 3.52/1.65 3.52/1.65 p(0) -> 0 3.52/1.65 p(s(X)) -> X 3.52/1.65 leq(0, Y) -> true 3.52/1.65 leq(s(X), 0) -> false 3.52/1.65 leq(s(X), s(Y)) -> leq(X, Y) 3.52/1.65 if(true, X, Y) -> activate(X) 3.52/1.65 if(false, X, Y) -> activate(Y) 3.52/1.65 diff(X, Y) -> if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) 3.52/1.65 0 -> n__0 3.52/1.65 s(X) -> n__s(X) 3.52/1.65 diff(X1, X2) -> n__diff(X1, X2) 3.52/1.65 p(X) -> n__p(X) 3.52/1.65 activate(n__0) -> 0 3.52/1.65 activate(n__s(X)) -> s(activate(X)) 3.52/1.65 activate(n__diff(X1, X2)) -> diff(activate(X1), activate(X2)) 3.52/1.65 activate(n__p(X)) -> p(activate(X)) 3.52/1.65 activate(X) -> X 3.52/1.65 3.52/1.65 S is empty. 3.52/1.65 Rewrite Strategy: FULL 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.52/1.65 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.52/1.65 3.52/1.65 The rewrite sequence 3.52/1.65 3.52/1.65 activate(n__p(X)) ->^+ p(activate(X)) 3.52/1.65 3.52/1.65 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.52/1.65 3.52/1.65 The pumping substitution is [X / n__p(X)]. 3.52/1.65 3.52/1.65 The result substitution is [ ]. 3.52/1.65 3.52/1.65 3.52/1.65 3.52/1.65 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (4) 3.52/1.65 Complex Obligation (BEST) 3.52/1.65 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (5) 3.52/1.65 Obligation: 3.52/1.65 Proved the lower bound n^1 for the following obligation: 3.52/1.65 3.52/1.65 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.65 3.52/1.65 3.52/1.65 The TRS R consists of the following rules: 3.52/1.65 3.52/1.65 p(0) -> 0 3.52/1.65 p(s(X)) -> X 3.52/1.65 leq(0, Y) -> true 3.52/1.65 leq(s(X), 0) -> false 3.52/1.65 leq(s(X), s(Y)) -> leq(X, Y) 3.52/1.65 if(true, X, Y) -> activate(X) 3.52/1.65 if(false, X, Y) -> activate(Y) 3.52/1.65 diff(X, Y) -> if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) 3.52/1.65 0 -> n__0 3.52/1.65 s(X) -> n__s(X) 3.52/1.65 diff(X1, X2) -> n__diff(X1, X2) 3.52/1.65 p(X) -> n__p(X) 3.52/1.65 activate(n__0) -> 0 3.52/1.65 activate(n__s(X)) -> s(activate(X)) 3.52/1.65 activate(n__diff(X1, X2)) -> diff(activate(X1), activate(X2)) 3.52/1.65 activate(n__p(X)) -> p(activate(X)) 3.52/1.65 activate(X) -> X 3.52/1.65 3.52/1.65 S is empty. 3.52/1.65 Rewrite Strategy: FULL 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (6) LowerBoundPropagationProof (FINISHED) 3.52/1.65 Propagated lower bound. 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (7) 3.52/1.65 BOUNDS(n^1, INF) 3.52/1.65 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (8) 3.52/1.65 Obligation: 3.52/1.65 Analyzing the following TRS for decreasing loops: 3.52/1.65 3.52/1.65 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.52/1.65 3.52/1.65 3.52/1.65 The TRS R consists of the following rules: 3.52/1.65 3.52/1.65 p(0) -> 0 3.52/1.65 p(s(X)) -> X 3.52/1.65 leq(0, Y) -> true 3.52/1.65 leq(s(X), 0) -> false 3.52/1.65 leq(s(X), s(Y)) -> leq(X, Y) 3.52/1.65 if(true, X, Y) -> activate(X) 3.52/1.65 if(false, X, Y) -> activate(Y) 3.52/1.65 diff(X, Y) -> if(leq(X, Y), n__0, n__s(n__diff(n__p(X), Y))) 3.52/1.65 0 -> n__0 3.52/1.65 s(X) -> n__s(X) 3.52/1.65 diff(X1, X2) -> n__diff(X1, X2) 3.52/1.65 p(X) -> n__p(X) 3.52/1.65 activate(n__0) -> 0 3.52/1.65 activate(n__s(X)) -> s(activate(X)) 3.52/1.65 activate(n__diff(X1, X2)) -> diff(activate(X1), activate(X2)) 3.52/1.65 activate(n__p(X)) -> p(activate(X)) 3.52/1.65 activate(X) -> X 3.52/1.65 3.52/1.65 S is empty. 3.52/1.65 Rewrite Strategy: FULL 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (9) DecreasingLoopProof (FINISHED) 3.52/1.65 The following loop(s) give(s) rise to the lower bound EXP: 3.52/1.65 3.52/1.65 The rewrite sequence 3.52/1.65 3.52/1.65 activate(n__diff(X1, X2)) ->^+ if(leq(activate(X1), activate(X2)), n__0, n__s(n__diff(n__p(activate(X1)), activate(X2)))) 3.52/1.65 3.52/1.65 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.52/1.65 3.52/1.65 The pumping substitution is [X1 / n__diff(X1, X2)]. 3.52/1.65 3.52/1.65 The result substitution is [ ]. 3.52/1.65 3.52/1.65 3.52/1.65 3.52/1.65 The rewrite sequence 3.52/1.65 3.52/1.65 activate(n__diff(X1, X2)) ->^+ if(leq(activate(X1), activate(X2)), n__0, n__s(n__diff(n__p(activate(X1)), activate(X2)))) 3.52/1.65 3.52/1.65 gives rise to a decreasing loop by considering the right hand sides subterm at position [2,0,0,0]. 3.52/1.65 3.52/1.65 The pumping substitution is [X1 / n__diff(X1, X2)]. 3.52/1.65 3.52/1.65 The result substitution is [ ]. 3.52/1.65 3.52/1.65 3.52/1.65 3.52/1.65 3.52/1.65 ---------------------------------------- 3.52/1.65 3.52/1.65 (10) 3.52/1.65 BOUNDS(EXP, INF) 3.61/1.69 EOF