11.12/3.73 WORST_CASE(NON_POLY, ?) 11.12/3.74 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 11.12/3.74 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 11.12/3.74 11.12/3.74 11.12/3.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 11.12/3.74 11.12/3.74 (0) CpxTRS 11.12/3.74 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 11.12/3.74 (2) TRS for Loop Detection 11.12/3.74 (3) DecreasingLoopProof [LOWER BOUND(ID), 43 ms] 11.12/3.74 (4) BEST 11.12/3.74 (5) proven lower bound 11.12/3.74 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 11.12/3.74 (7) BOUNDS(n^1, INF) 11.12/3.74 (8) TRS for Loop Detection 11.12/3.74 (9) InfiniteLowerBoundProof [FINISHED, 1361 ms] 11.12/3.74 (10) BOUNDS(INF, INF) 11.12/3.74 11.12/3.74 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (0) 11.12/3.74 Obligation: 11.12/3.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 11.12/3.74 11.12/3.74 11.12/3.74 The TRS R consists of the following rules: 11.12/3.74 11.12/3.74 nats -> adx(zeros) 11.12/3.74 zeros -> cons(n__0, n__zeros) 11.12/3.74 incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) 11.12/3.74 adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 11.12/3.74 hd(cons(X, Y)) -> activate(X) 11.12/3.74 tl(cons(X, Y)) -> activate(Y) 11.12/3.74 0 -> n__0 11.12/3.74 zeros -> n__zeros 11.12/3.74 s(X) -> n__s(X) 11.12/3.74 incr(X) -> n__incr(X) 11.12/3.74 adx(X) -> n__adx(X) 11.12/3.74 activate(n__0) -> 0 11.12/3.74 activate(n__zeros) -> zeros 11.12/3.74 activate(n__s(X)) -> s(X) 11.12/3.74 activate(n__incr(X)) -> incr(X) 11.12/3.74 activate(n__adx(X)) -> adx(X) 11.12/3.74 activate(X) -> X 11.12/3.74 11.12/3.74 S is empty. 11.12/3.74 Rewrite Strategy: FULL 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 11.12/3.74 Transformed a relative TRS into a decreasing-loop problem. 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (2) 11.12/3.74 Obligation: 11.12/3.74 Analyzing the following TRS for decreasing loops: 11.12/3.74 11.12/3.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 11.12/3.74 11.12/3.74 11.12/3.74 The TRS R consists of the following rules: 11.12/3.74 11.12/3.74 nats -> adx(zeros) 11.12/3.74 zeros -> cons(n__0, n__zeros) 11.12/3.74 incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) 11.12/3.74 adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 11.12/3.74 hd(cons(X, Y)) -> activate(X) 11.12/3.74 tl(cons(X, Y)) -> activate(Y) 11.12/3.74 0 -> n__0 11.12/3.74 zeros -> n__zeros 11.12/3.74 s(X) -> n__s(X) 11.12/3.74 incr(X) -> n__incr(X) 11.12/3.74 adx(X) -> n__adx(X) 11.12/3.74 activate(n__0) -> 0 11.12/3.74 activate(n__zeros) -> zeros 11.12/3.74 activate(n__s(X)) -> s(X) 11.12/3.74 activate(n__incr(X)) -> incr(X) 11.12/3.74 activate(n__adx(X)) -> adx(X) 11.12/3.74 activate(X) -> X 11.12/3.74 11.12/3.74 S is empty. 11.12/3.74 Rewrite Strategy: FULL 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (3) DecreasingLoopProof (LOWER BOUND(ID)) 11.12/3.74 The following loop(s) give(s) rise to the lower bound Omega(n^1): 11.12/3.74 11.12/3.74 The rewrite sequence 11.12/3.74 11.12/3.74 activate(n__incr(cons(X1_0, Y2_0))) ->^+ cons(n__s(activate(X1_0)), n__incr(activate(Y2_0))) 11.12/3.74 11.12/3.74 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 11.12/3.74 11.12/3.74 The pumping substitution is [X1_0 / n__incr(cons(X1_0, Y2_0))]. 11.12/3.74 11.12/3.74 The result substitution is [ ]. 11.12/3.74 11.12/3.74 11.12/3.74 11.12/3.74 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (4) 11.12/3.74 Complex Obligation (BEST) 11.12/3.74 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (5) 11.12/3.74 Obligation: 11.12/3.74 Proved the lower bound n^1 for the following obligation: 11.12/3.74 11.12/3.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 11.12/3.74 11.12/3.74 11.12/3.74 The TRS R consists of the following rules: 11.12/3.74 11.12/3.74 nats -> adx(zeros) 11.12/3.74 zeros -> cons(n__0, n__zeros) 11.12/3.74 incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) 11.12/3.74 adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 11.12/3.74 hd(cons(X, Y)) -> activate(X) 11.12/3.74 tl(cons(X, Y)) -> activate(Y) 11.12/3.74 0 -> n__0 11.12/3.74 zeros -> n__zeros 11.12/3.74 s(X) -> n__s(X) 11.12/3.74 incr(X) -> n__incr(X) 11.12/3.74 adx(X) -> n__adx(X) 11.12/3.74 activate(n__0) -> 0 11.12/3.74 activate(n__zeros) -> zeros 11.12/3.74 activate(n__s(X)) -> s(X) 11.12/3.74 activate(n__incr(X)) -> incr(X) 11.12/3.74 activate(n__adx(X)) -> adx(X) 11.12/3.74 activate(X) -> X 11.12/3.74 11.12/3.74 S is empty. 11.12/3.74 Rewrite Strategy: FULL 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (6) LowerBoundPropagationProof (FINISHED) 11.12/3.74 Propagated lower bound. 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (7) 11.12/3.74 BOUNDS(n^1, INF) 11.12/3.74 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (8) 11.12/3.74 Obligation: 11.12/3.74 Analyzing the following TRS for decreasing loops: 11.12/3.74 11.12/3.74 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(INF, INF). 11.12/3.74 11.12/3.74 11.12/3.74 The TRS R consists of the following rules: 11.12/3.74 11.12/3.74 nats -> adx(zeros) 11.12/3.74 zeros -> cons(n__0, n__zeros) 11.12/3.74 incr(cons(X, Y)) -> cons(n__s(activate(X)), n__incr(activate(Y))) 11.12/3.74 adx(cons(X, Y)) -> incr(cons(activate(X), n__adx(activate(Y)))) 11.12/3.74 hd(cons(X, Y)) -> activate(X) 11.12/3.74 tl(cons(X, Y)) -> activate(Y) 11.12/3.74 0 -> n__0 11.12/3.74 zeros -> n__zeros 11.12/3.74 s(X) -> n__s(X) 11.12/3.74 incr(X) -> n__incr(X) 11.12/3.74 adx(X) -> n__adx(X) 11.12/3.74 activate(n__0) -> 0 11.12/3.74 activate(n__zeros) -> zeros 11.12/3.74 activate(n__s(X)) -> s(X) 11.12/3.74 activate(n__incr(X)) -> incr(X) 11.12/3.74 activate(n__adx(X)) -> adx(X) 11.12/3.74 activate(X) -> X 11.12/3.74 11.12/3.74 S is empty. 11.12/3.74 Rewrite Strategy: FULL 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (9) InfiniteLowerBoundProof (FINISHED) 11.12/3.74 The following loop proves infinite runtime complexity: 11.12/3.74 11.12/3.74 The rewrite sequence 11.12/3.74 11.12/3.74 incr(cons(X, n__adx(cons(X1_1, n__zeros)))) ->^+ cons(n__s(activate(X)), n__incr(incr(cons(activate(X1_1), n__adx(cons(n__0, n__zeros)))))) 11.12/3.74 11.12/3.74 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0]. 11.12/3.74 11.12/3.74 The pumping substitution is [ ]. 11.12/3.74 11.12/3.74 The result substitution is [X / activate(X1_1), X1_1 / n__0]. 11.12/3.74 11.12/3.74 11.12/3.74 11.12/3.74 11.12/3.74 ---------------------------------------- 11.12/3.74 11.12/3.74 (10) 11.12/3.74 BOUNDS(INF, INF) 11.12/3.78 EOF