3.34/1.62 WORST_CASE(NON_POLY, ?) 3.34/1.63 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.34/1.63 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.34/1.63 3.34/1.63 3.34/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.34/1.63 3.34/1.63 (0) CpxTRS 3.34/1.63 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.34/1.63 (2) TRS for Loop Detection 3.34/1.63 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.34/1.63 (4) BEST 3.34/1.63 (5) proven lower bound 3.34/1.63 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.34/1.63 (7) BOUNDS(n^1, INF) 3.34/1.63 (8) TRS for Loop Detection 3.34/1.63 (9) DecreasingLoopProof [FINISHED, 36 ms] 3.34/1.63 (10) BOUNDS(EXP, INF) 3.34/1.63 3.34/1.63 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (0) 3.34/1.63 Obligation: 3.34/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.34/1.63 3.34/1.63 3.34/1.63 The TRS R consists of the following rules: 3.34/1.63 3.34/1.63 a__eq(0, 0) -> true 3.34/1.63 a__eq(s(X), s(Y)) -> a__eq(X, Y) 3.34/1.63 a__eq(X, Y) -> false 3.34/1.63 a__inf(X) -> cons(X, inf(s(X))) 3.34/1.63 a__take(0, X) -> nil 3.34/1.63 a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.34/1.63 a__length(nil) -> 0 3.34/1.63 a__length(cons(X, L)) -> s(length(L)) 3.34/1.63 mark(eq(X1, X2)) -> a__eq(X1, X2) 3.34/1.63 mark(inf(X)) -> a__inf(mark(X)) 3.34/1.63 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 3.34/1.63 mark(length(X)) -> a__length(mark(X)) 3.34/1.63 mark(0) -> 0 3.34/1.63 mark(true) -> true 3.34/1.63 mark(s(X)) -> s(X) 3.34/1.63 mark(false) -> false 3.34/1.63 mark(cons(X1, X2)) -> cons(X1, X2) 3.34/1.63 mark(nil) -> nil 3.34/1.63 a__eq(X1, X2) -> eq(X1, X2) 3.34/1.63 a__inf(X) -> inf(X) 3.34/1.63 a__take(X1, X2) -> take(X1, X2) 3.34/1.63 a__length(X) -> length(X) 3.34/1.63 3.34/1.63 S is empty. 3.34/1.63 Rewrite Strategy: FULL 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.34/1.63 Transformed a relative TRS into a decreasing-loop problem. 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (2) 3.34/1.63 Obligation: 3.34/1.63 Analyzing the following TRS for decreasing loops: 3.34/1.63 3.34/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.34/1.63 3.34/1.63 3.34/1.63 The TRS R consists of the following rules: 3.34/1.63 3.34/1.63 a__eq(0, 0) -> true 3.34/1.63 a__eq(s(X), s(Y)) -> a__eq(X, Y) 3.34/1.63 a__eq(X, Y) -> false 3.34/1.63 a__inf(X) -> cons(X, inf(s(X))) 3.34/1.63 a__take(0, X) -> nil 3.34/1.63 a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.34/1.63 a__length(nil) -> 0 3.34/1.63 a__length(cons(X, L)) -> s(length(L)) 3.34/1.63 mark(eq(X1, X2)) -> a__eq(X1, X2) 3.34/1.63 mark(inf(X)) -> a__inf(mark(X)) 3.34/1.63 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 3.34/1.63 mark(length(X)) -> a__length(mark(X)) 3.34/1.63 mark(0) -> 0 3.34/1.63 mark(true) -> true 3.34/1.63 mark(s(X)) -> s(X) 3.34/1.63 mark(false) -> false 3.34/1.63 mark(cons(X1, X2)) -> cons(X1, X2) 3.34/1.63 mark(nil) -> nil 3.34/1.63 a__eq(X1, X2) -> eq(X1, X2) 3.34/1.63 a__inf(X) -> inf(X) 3.34/1.63 a__take(X1, X2) -> take(X1, X2) 3.34/1.63 a__length(X) -> length(X) 3.34/1.63 3.34/1.63 S is empty. 3.34/1.63 Rewrite Strategy: FULL 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.34/1.63 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.34/1.63 3.34/1.63 The rewrite sequence 3.34/1.63 3.34/1.63 mark(length(X)) ->^+ a__length(mark(X)) 3.34/1.63 3.34/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.34/1.63 3.34/1.63 The pumping substitution is [X / length(X)]. 3.34/1.63 3.34/1.63 The result substitution is [ ]. 3.34/1.63 3.34/1.63 3.34/1.63 3.34/1.63 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (4) 3.34/1.63 Complex Obligation (BEST) 3.34/1.63 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (5) 3.34/1.63 Obligation: 3.34/1.63 Proved the lower bound n^1 for the following obligation: 3.34/1.63 3.34/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.34/1.63 3.34/1.63 3.34/1.63 The TRS R consists of the following rules: 3.34/1.63 3.34/1.63 a__eq(0, 0) -> true 3.34/1.63 a__eq(s(X), s(Y)) -> a__eq(X, Y) 3.34/1.63 a__eq(X, Y) -> false 3.34/1.63 a__inf(X) -> cons(X, inf(s(X))) 3.34/1.63 a__take(0, X) -> nil 3.34/1.63 a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.34/1.63 a__length(nil) -> 0 3.34/1.63 a__length(cons(X, L)) -> s(length(L)) 3.34/1.63 mark(eq(X1, X2)) -> a__eq(X1, X2) 3.34/1.63 mark(inf(X)) -> a__inf(mark(X)) 3.34/1.63 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 3.34/1.63 mark(length(X)) -> a__length(mark(X)) 3.34/1.63 mark(0) -> 0 3.34/1.63 mark(true) -> true 3.34/1.63 mark(s(X)) -> s(X) 3.34/1.63 mark(false) -> false 3.34/1.63 mark(cons(X1, X2)) -> cons(X1, X2) 3.34/1.63 mark(nil) -> nil 3.34/1.63 a__eq(X1, X2) -> eq(X1, X2) 3.34/1.63 a__inf(X) -> inf(X) 3.34/1.63 a__take(X1, X2) -> take(X1, X2) 3.34/1.63 a__length(X) -> length(X) 3.34/1.63 3.34/1.63 S is empty. 3.34/1.63 Rewrite Strategy: FULL 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (6) LowerBoundPropagationProof (FINISHED) 3.34/1.63 Propagated lower bound. 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (7) 3.34/1.63 BOUNDS(n^1, INF) 3.34/1.63 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (8) 3.34/1.63 Obligation: 3.34/1.63 Analyzing the following TRS for decreasing loops: 3.34/1.63 3.34/1.63 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.34/1.63 3.34/1.63 3.34/1.63 The TRS R consists of the following rules: 3.34/1.63 3.34/1.63 a__eq(0, 0) -> true 3.34/1.63 a__eq(s(X), s(Y)) -> a__eq(X, Y) 3.34/1.63 a__eq(X, Y) -> false 3.34/1.63 a__inf(X) -> cons(X, inf(s(X))) 3.34/1.63 a__take(0, X) -> nil 3.34/1.63 a__take(s(X), cons(Y, L)) -> cons(Y, take(X, L)) 3.34/1.63 a__length(nil) -> 0 3.34/1.63 a__length(cons(X, L)) -> s(length(L)) 3.34/1.63 mark(eq(X1, X2)) -> a__eq(X1, X2) 3.34/1.63 mark(inf(X)) -> a__inf(mark(X)) 3.34/1.63 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 3.34/1.63 mark(length(X)) -> a__length(mark(X)) 3.34/1.63 mark(0) -> 0 3.34/1.63 mark(true) -> true 3.34/1.63 mark(s(X)) -> s(X) 3.34/1.63 mark(false) -> false 3.34/1.63 mark(cons(X1, X2)) -> cons(X1, X2) 3.34/1.63 mark(nil) -> nil 3.34/1.63 a__eq(X1, X2) -> eq(X1, X2) 3.34/1.63 a__inf(X) -> inf(X) 3.34/1.63 a__take(X1, X2) -> take(X1, X2) 3.34/1.63 a__length(X) -> length(X) 3.34/1.63 3.34/1.63 S is empty. 3.34/1.63 Rewrite Strategy: FULL 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (9) DecreasingLoopProof (FINISHED) 3.34/1.63 The following loop(s) give(s) rise to the lower bound EXP: 3.34/1.63 3.34/1.63 The rewrite sequence 3.34/1.63 3.34/1.63 mark(inf(X)) ->^+ cons(mark(X), inf(s(mark(X)))) 3.34/1.63 3.34/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.34/1.63 3.34/1.63 The pumping substitution is [X / inf(X)]. 3.34/1.63 3.34/1.63 The result substitution is [ ]. 3.34/1.63 3.34/1.63 3.34/1.63 3.34/1.63 The rewrite sequence 3.34/1.63 3.34/1.63 mark(inf(X)) ->^+ cons(mark(X), inf(s(mark(X)))) 3.34/1.63 3.34/1.63 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 3.34/1.63 3.34/1.63 The pumping substitution is [X / inf(X)]. 3.34/1.63 3.34/1.63 The result substitution is [ ]. 3.34/1.63 3.34/1.63 3.34/1.63 3.34/1.63 3.34/1.63 ---------------------------------------- 3.34/1.63 3.34/1.63 (10) 3.34/1.63 BOUNDS(EXP, INF) 3.59/1.68 EOF