5.30/2.10 WORST_CASE(NON_POLY, ?) 5.30/2.12 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 5.30/2.12 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.30/2.12 5.30/2.12 5.30/2.12 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.30/2.12 5.30/2.12 (0) CpxTRS 5.30/2.12 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 5.30/2.12 (2) TRS for Loop Detection 5.30/2.12 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 5.30/2.12 (4) BEST 5.30/2.12 (5) proven lower bound 5.30/2.12 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 5.30/2.12 (7) BOUNDS(n^1, INF) 5.30/2.12 (8) TRS for Loop Detection 5.30/2.12 (9) DecreasingLoopProof [FINISHED, 460 ms] 5.30/2.12 (10) BOUNDS(EXP, INF) 5.30/2.12 5.30/2.12 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (0) 5.30/2.12 Obligation: 5.30/2.12 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.30/2.12 5.30/2.12 5.30/2.12 The TRS R consists of the following rules: 5.30/2.12 5.30/2.12 U11(tt, V2) -> U12(isNat(activate(V2))) 5.30/2.12 U12(tt) -> tt 5.30/2.12 U21(tt) -> tt 5.30/2.12 U31(tt, V2) -> U32(isNat(activate(V2))) 5.30/2.12 U32(tt) -> tt 5.30/2.12 U41(tt, N) -> activate(N) 5.30/2.12 U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U52(tt, M, N) -> s(plus(activate(N), activate(M))) 5.30/2.12 U61(tt) -> 0 5.30/2.12 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.30/2.12 isNat(n__0) -> tt 5.30/2.12 isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) 5.30/2.12 isNat(n__s(V1)) -> U21(isNat(activate(V1))) 5.30/2.12 isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) 5.30/2.12 plus(N, 0) -> U41(isNat(N), N) 5.30/2.12 plus(N, s(M)) -> U51(isNat(M), M, N) 5.30/2.12 x(N, 0) -> U61(isNat(N)) 5.30/2.12 x(N, s(M)) -> U71(isNat(M), M, N) 5.30/2.12 0 -> n__0 5.30/2.12 plus(X1, X2) -> n__plus(X1, X2) 5.30/2.12 s(X) -> n__s(X) 5.30/2.12 x(X1, X2) -> n__x(X1, X2) 5.30/2.12 activate(n__0) -> 0 5.30/2.12 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.30/2.12 activate(n__s(X)) -> s(activate(X)) 5.30/2.12 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.30/2.12 activate(X) -> X 5.30/2.12 5.30/2.12 S is empty. 5.30/2.12 Rewrite Strategy: FULL 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 5.30/2.12 Transformed a relative TRS into a decreasing-loop problem. 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (2) 5.30/2.12 Obligation: 5.30/2.12 Analyzing the following TRS for decreasing loops: 5.30/2.12 5.30/2.12 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.30/2.12 5.30/2.12 5.30/2.12 The TRS R consists of the following rules: 5.30/2.12 5.30/2.12 U11(tt, V2) -> U12(isNat(activate(V2))) 5.30/2.12 U12(tt) -> tt 5.30/2.12 U21(tt) -> tt 5.30/2.12 U31(tt, V2) -> U32(isNat(activate(V2))) 5.30/2.12 U32(tt) -> tt 5.30/2.12 U41(tt, N) -> activate(N) 5.30/2.12 U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U52(tt, M, N) -> s(plus(activate(N), activate(M))) 5.30/2.12 U61(tt) -> 0 5.30/2.12 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.30/2.12 isNat(n__0) -> tt 5.30/2.12 isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) 5.30/2.12 isNat(n__s(V1)) -> U21(isNat(activate(V1))) 5.30/2.12 isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) 5.30/2.12 plus(N, 0) -> U41(isNat(N), N) 5.30/2.12 plus(N, s(M)) -> U51(isNat(M), M, N) 5.30/2.12 x(N, 0) -> U61(isNat(N)) 5.30/2.12 x(N, s(M)) -> U71(isNat(M), M, N) 5.30/2.12 0 -> n__0 5.30/2.12 plus(X1, X2) -> n__plus(X1, X2) 5.30/2.12 s(X) -> n__s(X) 5.30/2.12 x(X1, X2) -> n__x(X1, X2) 5.30/2.12 activate(n__0) -> 0 5.30/2.12 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.30/2.12 activate(n__s(X)) -> s(activate(X)) 5.30/2.12 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.30/2.12 activate(X) -> X 5.30/2.12 5.30/2.12 S is empty. 5.30/2.12 Rewrite Strategy: FULL 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (3) DecreasingLoopProof (LOWER BOUND(ID)) 5.30/2.12 The following loop(s) give(s) rise to the lower bound Omega(n^1): 5.30/2.12 5.30/2.12 The rewrite sequence 5.30/2.12 5.30/2.12 activate(n__s(X)) ->^+ s(activate(X)) 5.30/2.12 5.30/2.12 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 5.30/2.12 5.30/2.12 The pumping substitution is [X / n__s(X)]. 5.30/2.12 5.30/2.12 The result substitution is [ ]. 5.30/2.12 5.30/2.12 5.30/2.12 5.30/2.12 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (4) 5.30/2.12 Complex Obligation (BEST) 5.30/2.12 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (5) 5.30/2.12 Obligation: 5.30/2.12 Proved the lower bound n^1 for the following obligation: 5.30/2.12 5.30/2.12 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.30/2.12 5.30/2.12 5.30/2.12 The TRS R consists of the following rules: 5.30/2.12 5.30/2.12 U11(tt, V2) -> U12(isNat(activate(V2))) 5.30/2.12 U12(tt) -> tt 5.30/2.12 U21(tt) -> tt 5.30/2.12 U31(tt, V2) -> U32(isNat(activate(V2))) 5.30/2.12 U32(tt) -> tt 5.30/2.12 U41(tt, N) -> activate(N) 5.30/2.12 U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U52(tt, M, N) -> s(plus(activate(N), activate(M))) 5.30/2.12 U61(tt) -> 0 5.30/2.12 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.30/2.12 isNat(n__0) -> tt 5.30/2.12 isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) 5.30/2.12 isNat(n__s(V1)) -> U21(isNat(activate(V1))) 5.30/2.12 isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) 5.30/2.12 plus(N, 0) -> U41(isNat(N), N) 5.30/2.12 plus(N, s(M)) -> U51(isNat(M), M, N) 5.30/2.12 x(N, 0) -> U61(isNat(N)) 5.30/2.12 x(N, s(M)) -> U71(isNat(M), M, N) 5.30/2.12 0 -> n__0 5.30/2.12 plus(X1, X2) -> n__plus(X1, X2) 5.30/2.12 s(X) -> n__s(X) 5.30/2.12 x(X1, X2) -> n__x(X1, X2) 5.30/2.12 activate(n__0) -> 0 5.30/2.12 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.30/2.12 activate(n__s(X)) -> s(activate(X)) 5.30/2.12 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.30/2.12 activate(X) -> X 5.30/2.12 5.30/2.12 S is empty. 5.30/2.12 Rewrite Strategy: FULL 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (6) LowerBoundPropagationProof (FINISHED) 5.30/2.12 Propagated lower bound. 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (7) 5.30/2.12 BOUNDS(n^1, INF) 5.30/2.12 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (8) 5.30/2.12 Obligation: 5.30/2.12 Analyzing the following TRS for decreasing loops: 5.30/2.12 5.30/2.12 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.30/2.12 5.30/2.12 5.30/2.12 The TRS R consists of the following rules: 5.30/2.12 5.30/2.12 U11(tt, V2) -> U12(isNat(activate(V2))) 5.30/2.12 U12(tt) -> tt 5.30/2.12 U21(tt) -> tt 5.30/2.12 U31(tt, V2) -> U32(isNat(activate(V2))) 5.30/2.12 U32(tt) -> tt 5.30/2.12 U41(tt, N) -> activate(N) 5.30/2.12 U51(tt, M, N) -> U52(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U52(tt, M, N) -> s(plus(activate(N), activate(M))) 5.30/2.12 U61(tt) -> 0 5.30/2.12 U71(tt, M, N) -> U72(isNat(activate(N)), activate(M), activate(N)) 5.30/2.12 U72(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.30/2.12 isNat(n__0) -> tt 5.30/2.12 isNat(n__plus(V1, V2)) -> U11(isNat(activate(V1)), activate(V2)) 5.30/2.12 isNat(n__s(V1)) -> U21(isNat(activate(V1))) 5.30/2.12 isNat(n__x(V1, V2)) -> U31(isNat(activate(V1)), activate(V2)) 5.30/2.12 plus(N, 0) -> U41(isNat(N), N) 5.30/2.12 plus(N, s(M)) -> U51(isNat(M), M, N) 5.30/2.12 x(N, 0) -> U61(isNat(N)) 5.30/2.12 x(N, s(M)) -> U71(isNat(M), M, N) 5.30/2.12 0 -> n__0 5.30/2.12 plus(X1, X2) -> n__plus(X1, X2) 5.30/2.12 s(X) -> n__s(X) 5.30/2.12 x(X1, X2) -> n__x(X1, X2) 5.30/2.12 activate(n__0) -> 0 5.30/2.12 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.30/2.12 activate(n__s(X)) -> s(activate(X)) 5.30/2.12 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.30/2.12 activate(X) -> X 5.30/2.12 5.30/2.12 S is empty. 5.30/2.12 Rewrite Strategy: FULL 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (9) DecreasingLoopProof (FINISHED) 5.30/2.12 The following loop(s) give(s) rise to the lower bound EXP: 5.30/2.12 5.30/2.12 The rewrite sequence 5.30/2.12 5.30/2.12 activate(n__x(X1, n__s(X1_0))) ->^+ U71(isNat(activate(X1_0)), activate(X1_0), activate(X1)) 5.30/2.12 5.30/2.12 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 5.30/2.12 5.30/2.12 The pumping substitution is [X1_0 / n__x(X1, n__s(X1_0))]. 5.30/2.12 5.30/2.12 The result substitution is [ ]. 5.30/2.12 5.30/2.12 5.30/2.12 5.30/2.12 The rewrite sequence 5.30/2.12 5.30/2.12 activate(n__x(X1, n__s(X1_0))) ->^+ U71(isNat(activate(X1_0)), activate(X1_0), activate(X1)) 5.30/2.12 5.30/2.12 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 5.30/2.12 5.30/2.12 The pumping substitution is [X1_0 / n__x(X1, n__s(X1_0))]. 5.30/2.12 5.30/2.12 The result substitution is [ ]. 5.30/2.12 5.30/2.12 5.30/2.12 5.30/2.12 5.30/2.12 ---------------------------------------- 5.30/2.12 5.30/2.12 (10) 5.30/2.12 BOUNDS(EXP, INF) 5.66/2.15 EOF