5.46/2.16 WORST_CASE(NON_POLY, ?) 5.46/2.18 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 5.46/2.18 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 5.46/2.18 5.46/2.18 5.46/2.18 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.46/2.18 5.46/2.18 (0) CpxTRS 5.46/2.18 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 5.46/2.18 (2) TRS for Loop Detection 5.46/2.18 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 5.46/2.18 (4) BEST 5.46/2.18 (5) proven lower bound 5.46/2.18 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 5.46/2.18 (7) BOUNDS(n^1, INF) 5.46/2.18 (8) TRS for Loop Detection 5.46/2.18 (9) DecreasingLoopProof [FINISHED, 286 ms] 5.46/2.18 (10) BOUNDS(EXP, INF) 5.46/2.18 5.46/2.18 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (0) 5.46/2.18 Obligation: 5.46/2.18 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.46/2.18 5.46/2.18 5.46/2.18 The TRS R consists of the following rules: 5.46/2.18 5.46/2.18 U11(tt, N) -> activate(N) 5.46/2.18 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 5.46/2.18 U31(tt) -> 0 5.46/2.18 U41(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.46/2.18 and(tt, X) -> activate(X) 5.46/2.18 isNat(n__0) -> tt 5.46/2.18 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 isNat(n__s(V1)) -> isNat(activate(V1)) 5.46/2.18 isNat(n__x(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 plus(N, 0) -> U11(isNat(N), N) 5.46/2.18 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 x(N, 0) -> U31(isNat(N)) 5.46/2.18 x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 0 -> n__0 5.46/2.18 plus(X1, X2) -> n__plus(X1, X2) 5.46/2.18 isNat(X) -> n__isNat(X) 5.46/2.18 s(X) -> n__s(X) 5.46/2.18 x(X1, X2) -> n__x(X1, X2) 5.46/2.18 activate(n__0) -> 0 5.46/2.18 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.46/2.18 activate(n__isNat(X)) -> isNat(X) 5.46/2.18 activate(n__s(X)) -> s(activate(X)) 5.46/2.18 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.46/2.18 activate(X) -> X 5.46/2.18 5.46/2.18 S is empty. 5.46/2.18 Rewrite Strategy: FULL 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 5.46/2.18 Transformed a relative TRS into a decreasing-loop problem. 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (2) 5.46/2.18 Obligation: 5.46/2.18 Analyzing the following TRS for decreasing loops: 5.46/2.18 5.46/2.18 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.46/2.18 5.46/2.18 5.46/2.18 The TRS R consists of the following rules: 5.46/2.18 5.46/2.18 U11(tt, N) -> activate(N) 5.46/2.18 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 5.46/2.18 U31(tt) -> 0 5.46/2.18 U41(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.46/2.18 and(tt, X) -> activate(X) 5.46/2.18 isNat(n__0) -> tt 5.46/2.18 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 isNat(n__s(V1)) -> isNat(activate(V1)) 5.46/2.18 isNat(n__x(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 plus(N, 0) -> U11(isNat(N), N) 5.46/2.18 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 x(N, 0) -> U31(isNat(N)) 5.46/2.18 x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 0 -> n__0 5.46/2.18 plus(X1, X2) -> n__plus(X1, X2) 5.46/2.18 isNat(X) -> n__isNat(X) 5.46/2.18 s(X) -> n__s(X) 5.46/2.18 x(X1, X2) -> n__x(X1, X2) 5.46/2.18 activate(n__0) -> 0 5.46/2.18 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.46/2.18 activate(n__isNat(X)) -> isNat(X) 5.46/2.18 activate(n__s(X)) -> s(activate(X)) 5.46/2.18 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.46/2.18 activate(X) -> X 5.46/2.18 5.46/2.18 S is empty. 5.46/2.18 Rewrite Strategy: FULL 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (3) DecreasingLoopProof (LOWER BOUND(ID)) 5.46/2.18 The following loop(s) give(s) rise to the lower bound Omega(n^1): 5.46/2.18 5.46/2.18 The rewrite sequence 5.46/2.18 5.46/2.18 activate(n__s(X)) ->^+ s(activate(X)) 5.46/2.18 5.46/2.18 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 5.46/2.18 5.46/2.18 The pumping substitution is [X / n__s(X)]. 5.46/2.18 5.46/2.18 The result substitution is [ ]. 5.46/2.18 5.46/2.18 5.46/2.18 5.46/2.18 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (4) 5.46/2.18 Complex Obligation (BEST) 5.46/2.18 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (5) 5.46/2.18 Obligation: 5.46/2.18 Proved the lower bound n^1 for the following obligation: 5.46/2.18 5.46/2.18 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.46/2.18 5.46/2.18 5.46/2.18 The TRS R consists of the following rules: 5.46/2.18 5.46/2.18 U11(tt, N) -> activate(N) 5.46/2.18 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 5.46/2.18 U31(tt) -> 0 5.46/2.18 U41(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.46/2.18 and(tt, X) -> activate(X) 5.46/2.18 isNat(n__0) -> tt 5.46/2.18 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 isNat(n__s(V1)) -> isNat(activate(V1)) 5.46/2.18 isNat(n__x(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 plus(N, 0) -> U11(isNat(N), N) 5.46/2.18 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 x(N, 0) -> U31(isNat(N)) 5.46/2.18 x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 0 -> n__0 5.46/2.18 plus(X1, X2) -> n__plus(X1, X2) 5.46/2.18 isNat(X) -> n__isNat(X) 5.46/2.18 s(X) -> n__s(X) 5.46/2.18 x(X1, X2) -> n__x(X1, X2) 5.46/2.18 activate(n__0) -> 0 5.46/2.18 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.46/2.18 activate(n__isNat(X)) -> isNat(X) 5.46/2.18 activate(n__s(X)) -> s(activate(X)) 5.46/2.18 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.46/2.18 activate(X) -> X 5.46/2.18 5.46/2.18 S is empty. 5.46/2.18 Rewrite Strategy: FULL 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (6) LowerBoundPropagationProof (FINISHED) 5.46/2.18 Propagated lower bound. 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (7) 5.46/2.18 BOUNDS(n^1, INF) 5.46/2.18 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (8) 5.46/2.18 Obligation: 5.46/2.18 Analyzing the following TRS for decreasing loops: 5.46/2.18 5.46/2.18 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 5.46/2.18 5.46/2.18 5.46/2.18 The TRS R consists of the following rules: 5.46/2.18 5.46/2.18 U11(tt, N) -> activate(N) 5.46/2.18 U21(tt, M, N) -> s(plus(activate(N), activate(M))) 5.46/2.18 U31(tt) -> 0 5.46/2.18 U41(tt, M, N) -> plus(x(activate(N), activate(M)), activate(N)) 5.46/2.18 and(tt, X) -> activate(X) 5.46/2.18 isNat(n__0) -> tt 5.46/2.18 isNat(n__plus(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 isNat(n__s(V1)) -> isNat(activate(V1)) 5.46/2.18 isNat(n__x(V1, V2)) -> and(isNat(activate(V1)), n__isNat(activate(V2))) 5.46/2.18 plus(N, 0) -> U11(isNat(N), N) 5.46/2.18 plus(N, s(M)) -> U21(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 x(N, 0) -> U31(isNat(N)) 5.46/2.18 x(N, s(M)) -> U41(and(isNat(M), n__isNat(N)), M, N) 5.46/2.18 0 -> n__0 5.46/2.18 plus(X1, X2) -> n__plus(X1, X2) 5.46/2.18 isNat(X) -> n__isNat(X) 5.46/2.18 s(X) -> n__s(X) 5.46/2.18 x(X1, X2) -> n__x(X1, X2) 5.46/2.18 activate(n__0) -> 0 5.46/2.18 activate(n__plus(X1, X2)) -> plus(activate(X1), activate(X2)) 5.46/2.18 activate(n__isNat(X)) -> isNat(X) 5.46/2.18 activate(n__s(X)) -> s(activate(X)) 5.46/2.18 activate(n__x(X1, X2)) -> x(activate(X1), activate(X2)) 5.46/2.18 activate(X) -> X 5.46/2.18 5.46/2.18 S is empty. 5.46/2.18 Rewrite Strategy: FULL 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (9) DecreasingLoopProof (FINISHED) 5.46/2.18 The following loop(s) give(s) rise to the lower bound EXP: 5.46/2.18 5.46/2.18 The rewrite sequence 5.46/2.18 5.46/2.18 activate(n__x(X1, n__s(X1_0))) ->^+ U41(and(isNat(activate(X1_0)), n__isNat(activate(X1))), activate(X1_0), activate(X1)) 5.46/2.18 5.46/2.18 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0,0]. 5.46/2.18 5.46/2.18 The pumping substitution is [X1_0 / n__x(X1, n__s(X1_0))]. 5.46/2.18 5.46/2.18 The result substitution is [ ]. 5.46/2.18 5.46/2.18 5.46/2.18 5.46/2.18 The rewrite sequence 5.46/2.18 5.46/2.18 activate(n__x(X1, n__s(X1_0))) ->^+ U41(and(isNat(activate(X1_0)), n__isNat(activate(X1))), activate(X1_0), activate(X1)) 5.46/2.18 5.46/2.18 gives rise to a decreasing loop by considering the right hand sides subterm at position [1]. 5.46/2.18 5.46/2.18 The pumping substitution is [X1_0 / n__x(X1, n__s(X1_0))]. 5.46/2.18 5.46/2.18 The result substitution is [ ]. 5.46/2.18 5.46/2.18 5.46/2.18 5.46/2.18 5.46/2.18 ---------------------------------------- 5.46/2.18 5.46/2.18 (10) 5.46/2.18 BOUNDS(EXP, INF) 5.56/2.21 EOF