329.28/291.55 WORST_CASE(Omega(n^1), ?) 329.28/291.56 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 329.28/291.56 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 329.28/291.56 329.28/291.56 329.28/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 329.28/291.56 329.28/291.56 (0) CpxTRS 329.28/291.56 (1) RenamingProof [BOTH BOUNDS(ID, ID), 0 ms] 329.28/291.56 (2) CpxTRS 329.28/291.56 (3) TypeInferenceProof [BOTH BOUNDS(ID, ID), 0 ms] 329.28/291.56 (4) typed CpxTrs 329.28/291.56 (5) OrderProof [LOWER BOUND(ID), 0 ms] 329.28/291.56 (6) typed CpxTrs 329.28/291.56 (7) RewriteLemmaProof [LOWER BOUND(ID), 478 ms] 329.28/291.56 (8) BEST 329.28/291.56 (9) proven lower bound 329.28/291.56 (10) LowerBoundPropagationProof [FINISHED, 0 ms] 329.28/291.56 (11) BOUNDS(n^1, INF) 329.28/291.56 (12) typed CpxTrs 329.28/291.56 (13) RewriteLemmaProof [LOWER BOUND(ID), 173 ms] 329.28/291.56 (14) typed CpxTrs 329.28/291.56 (15) RewriteLemmaProof [LOWER BOUND(ID), 79 ms] 329.28/291.56 (16) typed CpxTrs 329.28/291.56 (17) RewriteLemmaProof [LOWER BOUND(ID), 56 ms] 329.28/291.56 (18) typed CpxTrs 329.28/291.56 (19) RewriteLemmaProof [LOWER BOUND(ID), 37 ms] 329.28/291.56 (20) typed CpxTrs 329.28/291.56 329.28/291.56 329.28/291.56 ---------------------------------------- 329.28/291.56 329.28/291.56 (0) 329.28/291.56 Obligation: 329.28/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 329.28/291.56 329.28/291.56 329.28/291.56 The TRS R consists of the following rules: 329.28/291.56 329.28/291.56 active(filter(cons(X, Y), 0, M)) -> mark(cons(0, filter(Y, M, M))) 329.28/291.56 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.28/291.56 active(sieve(cons(0, Y))) -> mark(cons(0, sieve(Y))) 329.28/291.56 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.28/291.56 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.28/291.56 active(zprimes) -> mark(sieve(nats(s(s(0))))) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.28/291.56 active(cons(X1, X2)) -> cons(active(X1), X2) 329.28/291.56 active(s(X)) -> s(active(X)) 329.28/291.56 active(sieve(X)) -> sieve(active(X)) 329.28/291.56 active(nats(X)) -> nats(active(X)) 329.28/291.56 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.28/291.56 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.28/291.56 s(mark(X)) -> mark(s(X)) 329.28/291.56 sieve(mark(X)) -> mark(sieve(X)) 329.28/291.56 nats(mark(X)) -> mark(nats(X)) 329.28/291.56 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.28/291.56 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.28/291.56 proper(0) -> ok(0) 329.28/291.56 proper(s(X)) -> s(proper(X)) 329.28/291.56 proper(sieve(X)) -> sieve(proper(X)) 329.28/291.56 proper(nats(X)) -> nats(proper(X)) 329.28/291.56 proper(zprimes) -> ok(zprimes) 329.28/291.56 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.28/291.56 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.28/291.56 s(ok(X)) -> ok(s(X)) 329.28/291.56 sieve(ok(X)) -> ok(sieve(X)) 329.28/291.56 nats(ok(X)) -> ok(nats(X)) 329.28/291.56 top(mark(X)) -> top(proper(X)) 329.28/291.56 top(ok(X)) -> top(active(X)) 329.28/291.56 329.28/291.56 S is empty. 329.28/291.56 Rewrite Strategy: FULL 329.28/291.56 ---------------------------------------- 329.28/291.56 329.28/291.56 (1) RenamingProof (BOTH BOUNDS(ID, ID)) 329.28/291.56 Renamed function symbols to avoid clashes with predefined symbol. 329.28/291.56 ---------------------------------------- 329.28/291.56 329.28/291.56 (2) 329.28/291.56 Obligation: 329.28/291.56 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 329.28/291.56 329.28/291.56 329.28/291.56 The TRS R consists of the following rules: 329.28/291.56 329.28/291.56 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.28/291.56 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.28/291.56 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.28/291.56 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.28/291.56 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.28/291.56 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.28/291.56 active(cons(X1, X2)) -> cons(active(X1), X2) 329.28/291.56 active(s(X)) -> s(active(X)) 329.28/291.56 active(sieve(X)) -> sieve(active(X)) 329.28/291.56 active(nats(X)) -> nats(active(X)) 329.28/291.56 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.28/291.56 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.28/291.56 s(mark(X)) -> mark(s(X)) 329.28/291.56 sieve(mark(X)) -> mark(sieve(X)) 329.28/291.56 nats(mark(X)) -> mark(nats(X)) 329.28/291.56 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.28/291.56 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.28/291.56 proper(0') -> ok(0') 329.28/291.56 proper(s(X)) -> s(proper(X)) 329.28/291.56 proper(sieve(X)) -> sieve(proper(X)) 329.28/291.56 proper(nats(X)) -> nats(proper(X)) 329.28/291.56 proper(zprimes) -> ok(zprimes) 329.28/291.56 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.28/291.56 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.28/291.56 s(ok(X)) -> ok(s(X)) 329.28/291.56 sieve(ok(X)) -> ok(sieve(X)) 329.28/291.56 nats(ok(X)) -> ok(nats(X)) 329.28/291.56 top(mark(X)) -> top(proper(X)) 329.28/291.56 top(ok(X)) -> top(active(X)) 329.28/291.56 329.28/291.56 S is empty. 329.28/291.56 Rewrite Strategy: FULL 329.28/291.56 ---------------------------------------- 329.28/291.56 329.28/291.56 (3) TypeInferenceProof (BOTH BOUNDS(ID, ID)) 329.28/291.56 Infered types. 329.28/291.56 ---------------------------------------- 329.28/291.56 329.28/291.56 (4) 329.28/291.56 Obligation: 329.28/291.56 TRS: 329.28/291.56 Rules: 329.28/291.56 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.28/291.56 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.28/291.56 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.28/291.56 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.28/291.56 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.28/291.56 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.28/291.56 active(cons(X1, X2)) -> cons(active(X1), X2) 329.28/291.56 active(s(X)) -> s(active(X)) 329.28/291.56 active(sieve(X)) -> sieve(active(X)) 329.28/291.56 active(nats(X)) -> nats(active(X)) 329.28/291.56 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.28/291.56 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.28/291.56 s(mark(X)) -> mark(s(X)) 329.28/291.56 sieve(mark(X)) -> mark(sieve(X)) 329.28/291.56 nats(mark(X)) -> mark(nats(X)) 329.28/291.56 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.28/291.56 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.28/291.56 proper(0') -> ok(0') 329.28/291.56 proper(s(X)) -> s(proper(X)) 329.28/291.56 proper(sieve(X)) -> sieve(proper(X)) 329.28/291.56 proper(nats(X)) -> nats(proper(X)) 329.28/291.56 proper(zprimes) -> ok(zprimes) 329.28/291.56 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.28/291.56 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.28/291.56 s(ok(X)) -> ok(s(X)) 329.28/291.56 sieve(ok(X)) -> ok(sieve(X)) 329.28/291.56 nats(ok(X)) -> ok(nats(X)) 329.28/291.56 top(mark(X)) -> top(proper(X)) 329.28/291.56 top(ok(X)) -> top(active(X)) 329.28/291.56 329.28/291.56 Types: 329.28/291.56 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 0' :: 0':mark:zprimes:ok 329.28/291.56 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 zprimes :: 0':mark:zprimes:ok 329.28/291.56 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 top :: 0':mark:zprimes:ok -> top 329.28/291.56 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.28/291.56 hole_top2_0 :: top 329.28/291.56 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.28/291.56 329.28/291.56 ---------------------------------------- 329.28/291.56 329.28/291.56 (5) OrderProof (LOWER BOUND(ID)) 329.28/291.56 Heuristically decided to analyse the following defined symbols: 329.28/291.56 active, cons, filter, sieve, s, nats, proper, top 329.28/291.56 329.28/291.56 They will be analysed ascendingly in the following order: 329.28/291.56 cons < active 329.28/291.56 filter < active 329.28/291.56 sieve < active 329.28/291.56 s < active 329.28/291.56 nats < active 329.28/291.56 active < top 329.28/291.56 cons < proper 329.28/291.56 filter < proper 329.28/291.56 sieve < proper 329.28/291.56 s < proper 329.28/291.56 nats < proper 329.28/291.56 proper < top 329.28/291.56 329.28/291.56 ---------------------------------------- 329.28/291.56 329.28/291.56 (6) 329.28/291.56 Obligation: 329.28/291.56 TRS: 329.28/291.56 Rules: 329.28/291.56 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.28/291.56 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.28/291.56 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.28/291.56 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.28/291.56 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.28/291.56 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.28/291.56 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.28/291.56 active(cons(X1, X2)) -> cons(active(X1), X2) 329.28/291.56 active(s(X)) -> s(active(X)) 329.28/291.56 active(sieve(X)) -> sieve(active(X)) 329.28/291.56 active(nats(X)) -> nats(active(X)) 329.28/291.56 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.28/291.56 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.28/291.56 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.28/291.56 s(mark(X)) -> mark(s(X)) 329.28/291.56 sieve(mark(X)) -> mark(sieve(X)) 329.28/291.56 nats(mark(X)) -> mark(nats(X)) 329.28/291.56 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.28/291.56 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.28/291.56 proper(0') -> ok(0') 329.28/291.56 proper(s(X)) -> s(proper(X)) 329.28/291.56 proper(sieve(X)) -> sieve(proper(X)) 329.28/291.56 proper(nats(X)) -> nats(proper(X)) 329.28/291.56 proper(zprimes) -> ok(zprimes) 329.28/291.56 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.28/291.56 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.28/291.56 s(ok(X)) -> ok(s(X)) 329.28/291.56 sieve(ok(X)) -> ok(sieve(X)) 329.28/291.56 nats(ok(X)) -> ok(nats(X)) 329.28/291.56 top(mark(X)) -> top(proper(X)) 329.28/291.56 top(ok(X)) -> top(active(X)) 329.28/291.56 329.28/291.56 Types: 329.28/291.56 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 0' :: 0':mark:zprimes:ok 329.28/291.56 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 zprimes :: 0':mark:zprimes:ok 329.28/291.56 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.28/291.56 top :: 0':mark:zprimes:ok -> top 329.28/291.56 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.28/291.56 hole_top2_0 :: top 329.28/291.56 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.28/291.56 329.28/291.56 329.28/291.56 Generator Equations: 329.28/291.56 gen_0':mark:zprimes:ok3_0(0) <=> 0' 329.28/291.56 gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) 329.28/291.56 329.28/291.56 329.28/291.56 The following defined symbols remain to be analysed: 329.28/291.56 cons, active, filter, sieve, s, nats, proper, top 329.28/291.56 329.28/291.56 They will be analysed ascendingly in the following order: 329.28/291.56 cons < active 329.28/291.56 filter < active 329.28/291.56 sieve < active 329.28/291.56 s < active 329.28/291.56 nats < active 329.28/291.56 active < top 329.28/291.56 cons < proper 329.28/291.56 filter < proper 329.28/291.56 sieve < proper 329.28/291.56 s < proper 329.28/291.56 nats < proper 329.28/291.57 proper < top 329.28/291.57 329.28/291.57 ---------------------------------------- 329.28/291.57 329.28/291.57 (7) RewriteLemmaProof (LOWER BOUND(ID)) 329.28/291.57 Proved the following rewrite lemma: 329.28/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) 329.28/291.57 329.28/291.57 Induction Base: 329.28/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, 0)), gen_0':mark:zprimes:ok3_0(b)) 329.28/291.57 329.28/291.57 Induction Step: 329.28/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, +(n5_0, 1))), gen_0':mark:zprimes:ok3_0(b)) ->_R^Omega(1) 329.28/291.57 mark(cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b))) ->_IH 329.28/291.57 mark(*4_0) 329.28/291.57 329.28/291.57 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 329.28/291.57 ---------------------------------------- 329.28/291.57 329.28/291.57 (8) 329.28/291.57 Complex Obligation (BEST) 329.28/291.57 329.28/291.57 ---------------------------------------- 329.28/291.57 329.28/291.57 (9) 329.28/291.57 Obligation: 329.28/291.57 Proved the lower bound n^1 for the following obligation: 329.28/291.57 329.28/291.57 TRS: 329.28/291.57 Rules: 329.28/291.57 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.28/291.57 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.28/291.57 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.28/291.57 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.37/291.57 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.37/291.57 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.37/291.57 active(cons(X1, X2)) -> cons(active(X1), X2) 329.37/291.57 active(s(X)) -> s(active(X)) 329.37/291.57 active(sieve(X)) -> sieve(active(X)) 329.37/291.57 active(nats(X)) -> nats(active(X)) 329.37/291.57 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.37/291.57 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.37/291.57 s(mark(X)) -> mark(s(X)) 329.37/291.57 sieve(mark(X)) -> mark(sieve(X)) 329.37/291.57 nats(mark(X)) -> mark(nats(X)) 329.37/291.57 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.37/291.57 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.37/291.57 proper(0') -> ok(0') 329.37/291.57 proper(s(X)) -> s(proper(X)) 329.37/291.57 proper(sieve(X)) -> sieve(proper(X)) 329.37/291.57 proper(nats(X)) -> nats(proper(X)) 329.37/291.57 proper(zprimes) -> ok(zprimes) 329.37/291.57 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.37/291.57 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.37/291.57 s(ok(X)) -> ok(s(X)) 329.37/291.57 sieve(ok(X)) -> ok(sieve(X)) 329.37/291.57 nats(ok(X)) -> ok(nats(X)) 329.37/291.57 top(mark(X)) -> top(proper(X)) 329.37/291.57 top(ok(X)) -> top(active(X)) 329.37/291.57 329.37/291.57 Types: 329.37/291.57 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 0' :: 0':mark:zprimes:ok 329.37/291.57 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 zprimes :: 0':mark:zprimes:ok 329.37/291.57 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 top :: 0':mark:zprimes:ok -> top 329.37/291.57 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.37/291.57 hole_top2_0 :: top 329.37/291.57 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.37/291.57 329.37/291.57 329.37/291.57 Generator Equations: 329.37/291.57 gen_0':mark:zprimes:ok3_0(0) <=> 0' 329.37/291.57 gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) 329.37/291.57 329.37/291.57 329.37/291.57 The following defined symbols remain to be analysed: 329.37/291.57 cons, active, filter, sieve, s, nats, proper, top 329.37/291.57 329.37/291.57 They will be analysed ascendingly in the following order: 329.37/291.57 cons < active 329.37/291.57 filter < active 329.37/291.57 sieve < active 329.37/291.57 s < active 329.37/291.57 nats < active 329.37/291.57 active < top 329.37/291.57 cons < proper 329.37/291.57 filter < proper 329.37/291.57 sieve < proper 329.37/291.57 s < proper 329.37/291.57 nats < proper 329.37/291.57 proper < top 329.37/291.57 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (10) LowerBoundPropagationProof (FINISHED) 329.37/291.57 Propagated lower bound. 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (11) 329.37/291.57 BOUNDS(n^1, INF) 329.37/291.57 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (12) 329.37/291.57 Obligation: 329.37/291.57 TRS: 329.37/291.57 Rules: 329.37/291.57 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.37/291.57 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.37/291.57 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.37/291.57 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.37/291.57 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.37/291.57 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.37/291.57 active(cons(X1, X2)) -> cons(active(X1), X2) 329.37/291.57 active(s(X)) -> s(active(X)) 329.37/291.57 active(sieve(X)) -> sieve(active(X)) 329.37/291.57 active(nats(X)) -> nats(active(X)) 329.37/291.57 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.37/291.57 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.37/291.57 s(mark(X)) -> mark(s(X)) 329.37/291.57 sieve(mark(X)) -> mark(sieve(X)) 329.37/291.57 nats(mark(X)) -> mark(nats(X)) 329.37/291.57 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.37/291.57 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.37/291.57 proper(0') -> ok(0') 329.37/291.57 proper(s(X)) -> s(proper(X)) 329.37/291.57 proper(sieve(X)) -> sieve(proper(X)) 329.37/291.57 proper(nats(X)) -> nats(proper(X)) 329.37/291.57 proper(zprimes) -> ok(zprimes) 329.37/291.57 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.37/291.57 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.37/291.57 s(ok(X)) -> ok(s(X)) 329.37/291.57 sieve(ok(X)) -> ok(sieve(X)) 329.37/291.57 nats(ok(X)) -> ok(nats(X)) 329.37/291.57 top(mark(X)) -> top(proper(X)) 329.37/291.57 top(ok(X)) -> top(active(X)) 329.37/291.57 329.37/291.57 Types: 329.37/291.57 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 0' :: 0':mark:zprimes:ok 329.37/291.57 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 zprimes :: 0':mark:zprimes:ok 329.37/291.57 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 top :: 0':mark:zprimes:ok -> top 329.37/291.57 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.37/291.57 hole_top2_0 :: top 329.37/291.57 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.37/291.57 329.37/291.57 329.37/291.57 Lemmas: 329.37/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) 329.37/291.57 329.37/291.57 329.37/291.57 Generator Equations: 329.37/291.57 gen_0':mark:zprimes:ok3_0(0) <=> 0' 329.37/291.57 gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) 329.37/291.57 329.37/291.57 329.37/291.57 The following defined symbols remain to be analysed: 329.37/291.57 filter, active, sieve, s, nats, proper, top 329.37/291.57 329.37/291.57 They will be analysed ascendingly in the following order: 329.37/291.57 filter < active 329.37/291.57 sieve < active 329.37/291.57 s < active 329.37/291.57 nats < active 329.37/291.57 active < top 329.37/291.57 filter < proper 329.37/291.57 sieve < proper 329.37/291.57 s < proper 329.37/291.57 nats < proper 329.37/291.57 proper < top 329.37/291.57 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (13) RewriteLemmaProof (LOWER BOUND(ID)) 329.37/291.57 Proved the following rewrite lemma: 329.37/291.57 filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) 329.37/291.57 329.37/291.57 Induction Base: 329.37/291.57 filter(gen_0':mark:zprimes:ok3_0(+(1, 0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) 329.37/291.57 329.37/291.57 Induction Step: 329.37/291.57 filter(gen_0':mark:zprimes:ok3_0(+(1, +(n916_0, 1))), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) ->_R^Omega(1) 329.37/291.57 mark(filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c))) ->_IH 329.37/291.57 mark(*4_0) 329.37/291.57 329.37/291.57 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (14) 329.37/291.57 Obligation: 329.37/291.57 TRS: 329.37/291.57 Rules: 329.37/291.57 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.37/291.57 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.37/291.57 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.37/291.57 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.37/291.57 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.37/291.57 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.37/291.57 active(cons(X1, X2)) -> cons(active(X1), X2) 329.37/291.57 active(s(X)) -> s(active(X)) 329.37/291.57 active(sieve(X)) -> sieve(active(X)) 329.37/291.57 active(nats(X)) -> nats(active(X)) 329.37/291.57 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.37/291.57 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.37/291.57 s(mark(X)) -> mark(s(X)) 329.37/291.57 sieve(mark(X)) -> mark(sieve(X)) 329.37/291.57 nats(mark(X)) -> mark(nats(X)) 329.37/291.57 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.37/291.57 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.37/291.57 proper(0') -> ok(0') 329.37/291.57 proper(s(X)) -> s(proper(X)) 329.37/291.57 proper(sieve(X)) -> sieve(proper(X)) 329.37/291.57 proper(nats(X)) -> nats(proper(X)) 329.37/291.57 proper(zprimes) -> ok(zprimes) 329.37/291.57 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.37/291.57 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.37/291.57 s(ok(X)) -> ok(s(X)) 329.37/291.57 sieve(ok(X)) -> ok(sieve(X)) 329.37/291.57 nats(ok(X)) -> ok(nats(X)) 329.37/291.57 top(mark(X)) -> top(proper(X)) 329.37/291.57 top(ok(X)) -> top(active(X)) 329.37/291.57 329.37/291.57 Types: 329.37/291.57 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 0' :: 0':mark:zprimes:ok 329.37/291.57 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 zprimes :: 0':mark:zprimes:ok 329.37/291.57 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 top :: 0':mark:zprimes:ok -> top 329.37/291.57 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.37/291.57 hole_top2_0 :: top 329.37/291.57 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.37/291.57 329.37/291.57 329.37/291.57 Lemmas: 329.37/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) 329.37/291.57 filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) 329.37/291.57 329.37/291.57 329.37/291.57 Generator Equations: 329.37/291.57 gen_0':mark:zprimes:ok3_0(0) <=> 0' 329.37/291.57 gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) 329.37/291.57 329.37/291.57 329.37/291.57 The following defined symbols remain to be analysed: 329.37/291.57 sieve, active, s, nats, proper, top 329.37/291.57 329.37/291.57 They will be analysed ascendingly in the following order: 329.37/291.57 sieve < active 329.37/291.57 s < active 329.37/291.57 nats < active 329.37/291.57 active < top 329.37/291.57 sieve < proper 329.37/291.57 s < proper 329.37/291.57 nats < proper 329.37/291.57 proper < top 329.37/291.57 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (15) RewriteLemmaProof (LOWER BOUND(ID)) 329.37/291.57 Proved the following rewrite lemma: 329.37/291.57 sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) 329.37/291.57 329.37/291.57 Induction Base: 329.37/291.57 sieve(gen_0':mark:zprimes:ok3_0(+(1, 0))) 329.37/291.57 329.37/291.57 Induction Step: 329.37/291.57 sieve(gen_0':mark:zprimes:ok3_0(+(1, +(n3572_0, 1)))) ->_R^Omega(1) 329.37/291.57 mark(sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0)))) ->_IH 329.37/291.57 mark(*4_0) 329.37/291.57 329.37/291.57 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (16) 329.37/291.57 Obligation: 329.37/291.57 TRS: 329.37/291.57 Rules: 329.37/291.57 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.37/291.57 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.37/291.57 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.37/291.57 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.37/291.57 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.37/291.57 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.37/291.57 active(cons(X1, X2)) -> cons(active(X1), X2) 329.37/291.57 active(s(X)) -> s(active(X)) 329.37/291.57 active(sieve(X)) -> sieve(active(X)) 329.37/291.57 active(nats(X)) -> nats(active(X)) 329.37/291.57 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.37/291.57 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.37/291.57 s(mark(X)) -> mark(s(X)) 329.37/291.57 sieve(mark(X)) -> mark(sieve(X)) 329.37/291.57 nats(mark(X)) -> mark(nats(X)) 329.37/291.57 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.37/291.57 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.37/291.57 proper(0') -> ok(0') 329.37/291.57 proper(s(X)) -> s(proper(X)) 329.37/291.57 proper(sieve(X)) -> sieve(proper(X)) 329.37/291.57 proper(nats(X)) -> nats(proper(X)) 329.37/291.57 proper(zprimes) -> ok(zprimes) 329.37/291.57 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.37/291.57 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.37/291.57 s(ok(X)) -> ok(s(X)) 329.37/291.57 sieve(ok(X)) -> ok(sieve(X)) 329.37/291.57 nats(ok(X)) -> ok(nats(X)) 329.37/291.57 top(mark(X)) -> top(proper(X)) 329.37/291.57 top(ok(X)) -> top(active(X)) 329.37/291.57 329.37/291.57 Types: 329.37/291.57 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 0' :: 0':mark:zprimes:ok 329.37/291.57 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 zprimes :: 0':mark:zprimes:ok 329.37/291.57 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 top :: 0':mark:zprimes:ok -> top 329.37/291.57 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.37/291.57 hole_top2_0 :: top 329.37/291.57 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.37/291.57 329.37/291.57 329.37/291.57 Lemmas: 329.37/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) 329.37/291.57 filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) 329.37/291.57 sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) 329.37/291.57 329.37/291.57 329.37/291.57 Generator Equations: 329.37/291.57 gen_0':mark:zprimes:ok3_0(0) <=> 0' 329.37/291.57 gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) 329.37/291.57 329.37/291.57 329.37/291.57 The following defined symbols remain to be analysed: 329.37/291.57 s, active, nats, proper, top 329.37/291.57 329.37/291.57 They will be analysed ascendingly in the following order: 329.37/291.57 s < active 329.37/291.57 nats < active 329.37/291.57 active < top 329.37/291.57 s < proper 329.37/291.57 nats < proper 329.37/291.57 proper < top 329.37/291.57 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (17) RewriteLemmaProof (LOWER BOUND(ID)) 329.37/291.57 Proved the following rewrite lemma: 329.37/291.57 s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0))) -> *4_0, rt in Omega(n4290_0) 329.37/291.57 329.37/291.57 Induction Base: 329.37/291.57 s(gen_0':mark:zprimes:ok3_0(+(1, 0))) 329.37/291.57 329.37/291.57 Induction Step: 329.37/291.57 s(gen_0':mark:zprimes:ok3_0(+(1, +(n4290_0, 1)))) ->_R^Omega(1) 329.37/291.57 mark(s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0)))) ->_IH 329.37/291.57 mark(*4_0) 329.37/291.57 329.37/291.57 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (18) 329.37/291.57 Obligation: 329.37/291.57 TRS: 329.37/291.57 Rules: 329.37/291.57 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.37/291.57 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.37/291.57 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.37/291.57 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.37/291.57 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.37/291.57 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.37/291.57 active(cons(X1, X2)) -> cons(active(X1), X2) 329.37/291.57 active(s(X)) -> s(active(X)) 329.37/291.57 active(sieve(X)) -> sieve(active(X)) 329.37/291.57 active(nats(X)) -> nats(active(X)) 329.37/291.57 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.37/291.57 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.37/291.57 s(mark(X)) -> mark(s(X)) 329.37/291.57 sieve(mark(X)) -> mark(sieve(X)) 329.37/291.57 nats(mark(X)) -> mark(nats(X)) 329.37/291.57 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.37/291.57 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.37/291.57 proper(0') -> ok(0') 329.37/291.57 proper(s(X)) -> s(proper(X)) 329.37/291.57 proper(sieve(X)) -> sieve(proper(X)) 329.37/291.57 proper(nats(X)) -> nats(proper(X)) 329.37/291.57 proper(zprimes) -> ok(zprimes) 329.37/291.57 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.37/291.57 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.37/291.57 s(ok(X)) -> ok(s(X)) 329.37/291.57 sieve(ok(X)) -> ok(sieve(X)) 329.37/291.57 nats(ok(X)) -> ok(nats(X)) 329.37/291.57 top(mark(X)) -> top(proper(X)) 329.37/291.57 top(ok(X)) -> top(active(X)) 329.37/291.57 329.37/291.57 Types: 329.37/291.57 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 0' :: 0':mark:zprimes:ok 329.37/291.57 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 zprimes :: 0':mark:zprimes:ok 329.37/291.57 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 top :: 0':mark:zprimes:ok -> top 329.37/291.57 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.37/291.57 hole_top2_0 :: top 329.37/291.57 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.37/291.57 329.37/291.57 329.37/291.57 Lemmas: 329.37/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) 329.37/291.57 filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) 329.37/291.57 sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) 329.37/291.57 s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0))) -> *4_0, rt in Omega(n4290_0) 329.37/291.57 329.37/291.57 329.37/291.57 Generator Equations: 329.37/291.57 gen_0':mark:zprimes:ok3_0(0) <=> 0' 329.37/291.57 gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) 329.37/291.57 329.37/291.57 329.37/291.57 The following defined symbols remain to be analysed: 329.37/291.57 nats, active, proper, top 329.37/291.57 329.37/291.57 They will be analysed ascendingly in the following order: 329.37/291.57 nats < active 329.37/291.57 active < top 329.37/291.57 nats < proper 329.37/291.57 proper < top 329.37/291.57 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (19) RewriteLemmaProof (LOWER BOUND(ID)) 329.37/291.57 Proved the following rewrite lemma: 329.37/291.57 nats(gen_0':mark:zprimes:ok3_0(+(1, n5109_0))) -> *4_0, rt in Omega(n5109_0) 329.37/291.57 329.37/291.57 Induction Base: 329.37/291.57 nats(gen_0':mark:zprimes:ok3_0(+(1, 0))) 329.37/291.57 329.37/291.57 Induction Step: 329.37/291.57 nats(gen_0':mark:zprimes:ok3_0(+(1, +(n5109_0, 1)))) ->_R^Omega(1) 329.37/291.57 mark(nats(gen_0':mark:zprimes:ok3_0(+(1, n5109_0)))) ->_IH 329.37/291.57 mark(*4_0) 329.37/291.57 329.37/291.57 We have rt in Omega(n^1) and sz in O(n). Thus, we have irc_R in Omega(n). 329.37/291.57 ---------------------------------------- 329.37/291.57 329.37/291.57 (20) 329.37/291.57 Obligation: 329.37/291.57 TRS: 329.37/291.57 Rules: 329.37/291.57 active(filter(cons(X, Y), 0', M)) -> mark(cons(0', filter(Y, M, M))) 329.37/291.57 active(filter(cons(X, Y), s(N), M)) -> mark(cons(X, filter(Y, N, M))) 329.37/291.57 active(sieve(cons(0', Y))) -> mark(cons(0', sieve(Y))) 329.37/291.57 active(sieve(cons(s(N), Y))) -> mark(cons(s(N), sieve(filter(Y, N, N)))) 329.37/291.57 active(nats(N)) -> mark(cons(N, nats(s(N)))) 329.37/291.57 active(zprimes) -> mark(sieve(nats(s(s(0'))))) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(active(X1), X2, X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, active(X2), X3) 329.37/291.57 active(filter(X1, X2, X3)) -> filter(X1, X2, active(X3)) 329.37/291.57 active(cons(X1, X2)) -> cons(active(X1), X2) 329.37/291.57 active(s(X)) -> s(active(X)) 329.37/291.57 active(sieve(X)) -> sieve(active(X)) 329.37/291.57 active(nats(X)) -> nats(active(X)) 329.37/291.57 filter(mark(X1), X2, X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, mark(X2), X3) -> mark(filter(X1, X2, X3)) 329.37/291.57 filter(X1, X2, mark(X3)) -> mark(filter(X1, X2, X3)) 329.37/291.57 cons(mark(X1), X2) -> mark(cons(X1, X2)) 329.37/291.57 s(mark(X)) -> mark(s(X)) 329.37/291.57 sieve(mark(X)) -> mark(sieve(X)) 329.37/291.57 nats(mark(X)) -> mark(nats(X)) 329.37/291.57 proper(filter(X1, X2, X3)) -> filter(proper(X1), proper(X2), proper(X3)) 329.37/291.57 proper(cons(X1, X2)) -> cons(proper(X1), proper(X2)) 329.37/291.57 proper(0') -> ok(0') 329.37/291.57 proper(s(X)) -> s(proper(X)) 329.37/291.57 proper(sieve(X)) -> sieve(proper(X)) 329.37/291.57 proper(nats(X)) -> nats(proper(X)) 329.37/291.57 proper(zprimes) -> ok(zprimes) 329.37/291.57 filter(ok(X1), ok(X2), ok(X3)) -> ok(filter(X1, X2, X3)) 329.37/291.57 cons(ok(X1), ok(X2)) -> ok(cons(X1, X2)) 329.37/291.57 s(ok(X)) -> ok(s(X)) 329.37/291.57 sieve(ok(X)) -> ok(sieve(X)) 329.37/291.57 nats(ok(X)) -> ok(nats(X)) 329.37/291.57 top(mark(X)) -> top(proper(X)) 329.37/291.57 top(ok(X)) -> top(active(X)) 329.37/291.57 329.37/291.57 Types: 329.37/291.57 active :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 filter :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 cons :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 0' :: 0':mark:zprimes:ok 329.37/291.57 mark :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 s :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 sieve :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 nats :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 zprimes :: 0':mark:zprimes:ok 329.37/291.57 proper :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 ok :: 0':mark:zprimes:ok -> 0':mark:zprimes:ok 329.37/291.57 top :: 0':mark:zprimes:ok -> top 329.37/291.57 hole_0':mark:zprimes:ok1_0 :: 0':mark:zprimes:ok 329.37/291.57 hole_top2_0 :: top 329.37/291.57 gen_0':mark:zprimes:ok3_0 :: Nat -> 0':mark:zprimes:ok 329.37/291.57 329.37/291.57 329.37/291.57 Lemmas: 329.37/291.57 cons(gen_0':mark:zprimes:ok3_0(+(1, n5_0)), gen_0':mark:zprimes:ok3_0(b)) -> *4_0, rt in Omega(n5_0) 329.37/291.57 filter(gen_0':mark:zprimes:ok3_0(+(1, n916_0)), gen_0':mark:zprimes:ok3_0(b), gen_0':mark:zprimes:ok3_0(c)) -> *4_0, rt in Omega(n916_0) 329.37/291.57 sieve(gen_0':mark:zprimes:ok3_0(+(1, n3572_0))) -> *4_0, rt in Omega(n3572_0) 329.37/291.57 s(gen_0':mark:zprimes:ok3_0(+(1, n4290_0))) -> *4_0, rt in Omega(n4290_0) 329.37/291.57 nats(gen_0':mark:zprimes:ok3_0(+(1, n5109_0))) -> *4_0, rt in Omega(n5109_0) 329.37/291.57 329.37/291.57 329.37/291.57 Generator Equations: 329.37/291.57 gen_0':mark:zprimes:ok3_0(0) <=> 0' 329.37/291.57 gen_0':mark:zprimes:ok3_0(+(x, 1)) <=> mark(gen_0':mark:zprimes:ok3_0(x)) 329.37/291.57 329.37/291.57 329.37/291.57 The following defined symbols remain to be analysed: 329.37/291.57 active, proper, top 329.37/291.57 329.37/291.57 They will be analysed ascendingly in the following order: 329.37/291.57 active < top 329.37/291.57 proper < top 329.37/291.62 EOF