310.84/291.56 WORST_CASE(Omega(n^1), ?) 310.84/291.57 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 310.84/291.57 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 310.84/291.57 310.84/291.57 310.84/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.84/291.57 310.84/291.57 (0) CpxTRS 310.84/291.57 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 310.84/291.57 (2) TRS for Loop Detection 310.84/291.57 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 310.84/291.57 (4) BEST 310.84/291.57 (5) proven lower bound 310.84/291.57 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 310.84/291.57 (7) BOUNDS(n^1, INF) 310.84/291.57 (8) TRS for Loop Detection 310.84/291.57 310.84/291.57 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (0) 310.84/291.57 Obligation: 310.84/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.84/291.57 310.84/291.57 310.84/291.57 The TRS R consists of the following rules: 310.84/291.57 310.84/291.57 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 310.84/291.57 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 310.84/291.57 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 310.84/291.57 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(filter(activate(Y), N, N))) 310.84/291.57 nats(N) -> cons(N, n__nats(s(N))) 310.84/291.57 zprimes -> sieve(nats(s(s(0)))) 310.84/291.57 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 310.84/291.57 sieve(X) -> n__sieve(X) 310.84/291.57 nats(X) -> n__nats(X) 310.84/291.57 activate(n__filter(X1, X2, X3)) -> filter(X1, X2, X3) 310.84/291.57 activate(n__sieve(X)) -> sieve(X) 310.84/291.57 activate(n__nats(X)) -> nats(X) 310.84/291.57 activate(X) -> X 310.84/291.57 310.84/291.57 S is empty. 310.84/291.57 Rewrite Strategy: FULL 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 310.84/291.57 Transformed a relative TRS into a decreasing-loop problem. 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (2) 310.84/291.57 Obligation: 310.84/291.57 Analyzing the following TRS for decreasing loops: 310.84/291.57 310.84/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.84/291.57 310.84/291.57 310.84/291.57 The TRS R consists of the following rules: 310.84/291.57 310.84/291.57 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 310.84/291.57 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 310.84/291.57 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 310.84/291.57 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(filter(activate(Y), N, N))) 310.84/291.57 nats(N) -> cons(N, n__nats(s(N))) 310.84/291.57 zprimes -> sieve(nats(s(s(0)))) 310.84/291.57 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 310.84/291.57 sieve(X) -> n__sieve(X) 310.84/291.57 nats(X) -> n__nats(X) 310.84/291.57 activate(n__filter(X1, X2, X3)) -> filter(X1, X2, X3) 310.84/291.57 activate(n__sieve(X)) -> sieve(X) 310.84/291.57 activate(n__nats(X)) -> nats(X) 310.84/291.57 activate(X) -> X 310.84/291.57 310.84/291.57 S is empty. 310.84/291.57 Rewrite Strategy: FULL 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (3) DecreasingLoopProof (LOWER BOUND(ID)) 310.84/291.57 The following loop(s) give(s) rise to the lower bound Omega(n^1): 310.84/291.57 310.84/291.57 The rewrite sequence 310.84/291.57 310.84/291.57 sieve(cons(s(N), n__sieve(X1_0))) ->^+ cons(s(N), n__sieve(filter(sieve(X1_0), N, N))) 310.84/291.57 310.84/291.57 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0]. 310.84/291.57 310.84/291.57 The pumping substitution is [X1_0 / cons(s(N), n__sieve(X1_0))]. 310.84/291.57 310.84/291.57 The result substitution is [ ]. 310.84/291.57 310.84/291.57 310.84/291.57 310.84/291.57 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (4) 310.84/291.57 Complex Obligation (BEST) 310.84/291.57 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (5) 310.84/291.57 Obligation: 310.84/291.57 Proved the lower bound n^1 for the following obligation: 310.84/291.57 310.84/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.84/291.57 310.84/291.57 310.84/291.57 The TRS R consists of the following rules: 310.84/291.57 310.84/291.57 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 310.84/291.57 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 310.84/291.57 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 310.84/291.57 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(filter(activate(Y), N, N))) 310.84/291.57 nats(N) -> cons(N, n__nats(s(N))) 310.84/291.57 zprimes -> sieve(nats(s(s(0)))) 310.84/291.57 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 310.84/291.57 sieve(X) -> n__sieve(X) 310.84/291.57 nats(X) -> n__nats(X) 310.84/291.57 activate(n__filter(X1, X2, X3)) -> filter(X1, X2, X3) 310.84/291.57 activate(n__sieve(X)) -> sieve(X) 310.84/291.57 activate(n__nats(X)) -> nats(X) 310.84/291.57 activate(X) -> X 310.84/291.57 310.84/291.57 S is empty. 310.84/291.57 Rewrite Strategy: FULL 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (6) LowerBoundPropagationProof (FINISHED) 310.84/291.57 Propagated lower bound. 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (7) 310.84/291.57 BOUNDS(n^1, INF) 310.84/291.57 310.84/291.57 ---------------------------------------- 310.84/291.57 310.84/291.57 (8) 310.84/291.57 Obligation: 310.84/291.57 Analyzing the following TRS for decreasing loops: 310.84/291.57 310.84/291.57 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 310.84/291.57 310.84/291.57 310.84/291.57 The TRS R consists of the following rules: 310.84/291.57 310.84/291.57 filter(cons(X, Y), 0, M) -> cons(0, n__filter(activate(Y), M, M)) 310.84/291.57 filter(cons(X, Y), s(N), M) -> cons(X, n__filter(activate(Y), N, M)) 310.84/291.57 sieve(cons(0, Y)) -> cons(0, n__sieve(activate(Y))) 310.84/291.57 sieve(cons(s(N), Y)) -> cons(s(N), n__sieve(filter(activate(Y), N, N))) 310.84/291.57 nats(N) -> cons(N, n__nats(s(N))) 310.84/291.57 zprimes -> sieve(nats(s(s(0)))) 310.84/291.57 filter(X1, X2, X3) -> n__filter(X1, X2, X3) 310.84/291.57 sieve(X) -> n__sieve(X) 310.84/291.57 nats(X) -> n__nats(X) 310.84/291.57 activate(n__filter(X1, X2, X3)) -> filter(X1, X2, X3) 310.84/291.57 activate(n__sieve(X)) -> sieve(X) 310.84/291.57 activate(n__nats(X)) -> nats(X) 310.84/291.57 activate(X) -> X 310.84/291.57 310.84/291.57 S is empty. 310.84/291.57 Rewrite Strategy: FULL 310.96/291.60 EOF