3.70/1.75 WORST_CASE(NON_POLY, ?) 3.70/1.76 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 3.70/1.76 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 3.70/1.76 3.70/1.76 3.70/1.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.70/1.76 3.70/1.76 (0) CpxTRS 3.70/1.76 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 3.70/1.76 (2) TRS for Loop Detection 3.70/1.76 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 3.70/1.76 (4) BEST 3.70/1.76 (5) proven lower bound 3.70/1.76 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 3.70/1.76 (7) BOUNDS(n^1, INF) 3.70/1.76 (8) TRS for Loop Detection 3.70/1.76 (9) DecreasingLoopProof [FINISHED, 108 ms] 3.70/1.76 (10) BOUNDS(EXP, INF) 3.70/1.76 3.70/1.76 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (0) 3.70/1.76 Obligation: 3.70/1.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.70/1.76 3.70/1.76 3.70/1.76 The TRS R consists of the following rules: 3.70/1.76 3.70/1.76 minus(n__0, Y) -> 0 3.70/1.76 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 3.70/1.76 geq(X, n__0) -> true 3.70/1.76 geq(n__0, n__s(Y)) -> false 3.70/1.76 geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) 3.70/1.76 div(0, n__s(Y)) -> 0 3.70/1.76 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) 3.70/1.76 if(true, X, Y) -> activate(X) 3.70/1.76 if(false, X, Y) -> activate(Y) 3.70/1.76 0 -> n__0 3.70/1.76 s(X) -> n__s(X) 3.70/1.76 div(X1, X2) -> n__div(X1, X2) 3.70/1.76 minus(X1, X2) -> n__minus(X1, X2) 3.70/1.76 activate(n__0) -> 0 3.70/1.76 activate(n__s(X)) -> s(activate(X)) 3.70/1.76 activate(n__div(X1, X2)) -> div(activate(X1), X2) 3.70/1.76 activate(n__minus(X1, X2)) -> minus(X1, X2) 3.70/1.76 activate(X) -> X 3.70/1.76 3.70/1.76 S is empty. 3.70/1.76 Rewrite Strategy: FULL 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 3.70/1.76 Transformed a relative TRS into a decreasing-loop problem. 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (2) 3.70/1.76 Obligation: 3.70/1.76 Analyzing the following TRS for decreasing loops: 3.70/1.76 3.70/1.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.70/1.76 3.70/1.76 3.70/1.76 The TRS R consists of the following rules: 3.70/1.76 3.70/1.76 minus(n__0, Y) -> 0 3.70/1.76 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 3.70/1.76 geq(X, n__0) -> true 3.70/1.76 geq(n__0, n__s(Y)) -> false 3.70/1.76 geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) 3.70/1.76 div(0, n__s(Y)) -> 0 3.70/1.76 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) 3.70/1.76 if(true, X, Y) -> activate(X) 3.70/1.76 if(false, X, Y) -> activate(Y) 3.70/1.76 0 -> n__0 3.70/1.76 s(X) -> n__s(X) 3.70/1.76 div(X1, X2) -> n__div(X1, X2) 3.70/1.76 minus(X1, X2) -> n__minus(X1, X2) 3.70/1.76 activate(n__0) -> 0 3.70/1.76 activate(n__s(X)) -> s(activate(X)) 3.70/1.76 activate(n__div(X1, X2)) -> div(activate(X1), X2) 3.70/1.76 activate(n__minus(X1, X2)) -> minus(X1, X2) 3.70/1.76 activate(X) -> X 3.70/1.76 3.70/1.76 S is empty. 3.70/1.76 Rewrite Strategy: FULL 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (3) DecreasingLoopProof (LOWER BOUND(ID)) 3.70/1.76 The following loop(s) give(s) rise to the lower bound Omega(n^1): 3.70/1.76 3.70/1.76 The rewrite sequence 3.70/1.76 3.70/1.76 activate(n__s(X)) ->^+ s(activate(X)) 3.70/1.76 3.70/1.76 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 3.70/1.76 3.70/1.76 The pumping substitution is [X / n__s(X)]. 3.70/1.76 3.70/1.76 The result substitution is [ ]. 3.70/1.76 3.70/1.76 3.70/1.76 3.70/1.76 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (4) 3.70/1.76 Complex Obligation (BEST) 3.70/1.76 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (5) 3.70/1.76 Obligation: 3.70/1.76 Proved the lower bound n^1 for the following obligation: 3.70/1.76 3.70/1.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.70/1.76 3.70/1.76 3.70/1.76 The TRS R consists of the following rules: 3.70/1.76 3.70/1.76 minus(n__0, Y) -> 0 3.70/1.76 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 3.70/1.76 geq(X, n__0) -> true 3.70/1.76 geq(n__0, n__s(Y)) -> false 3.70/1.76 geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) 3.70/1.76 div(0, n__s(Y)) -> 0 3.70/1.76 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) 3.70/1.76 if(true, X, Y) -> activate(X) 3.70/1.76 if(false, X, Y) -> activate(Y) 3.70/1.76 0 -> n__0 3.70/1.76 s(X) -> n__s(X) 3.70/1.76 div(X1, X2) -> n__div(X1, X2) 3.70/1.76 minus(X1, X2) -> n__minus(X1, X2) 3.70/1.76 activate(n__0) -> 0 3.70/1.76 activate(n__s(X)) -> s(activate(X)) 3.70/1.76 activate(n__div(X1, X2)) -> div(activate(X1), X2) 3.70/1.76 activate(n__minus(X1, X2)) -> minus(X1, X2) 3.70/1.76 activate(X) -> X 3.70/1.76 3.70/1.76 S is empty. 3.70/1.76 Rewrite Strategy: FULL 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (6) LowerBoundPropagationProof (FINISHED) 3.70/1.76 Propagated lower bound. 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (7) 3.70/1.76 BOUNDS(n^1, INF) 3.70/1.76 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (8) 3.70/1.76 Obligation: 3.70/1.76 Analyzing the following TRS for decreasing loops: 3.70/1.76 3.70/1.76 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 3.70/1.76 3.70/1.76 3.70/1.76 The TRS R consists of the following rules: 3.70/1.76 3.70/1.76 minus(n__0, Y) -> 0 3.70/1.76 minus(n__s(X), n__s(Y)) -> minus(activate(X), activate(Y)) 3.70/1.76 geq(X, n__0) -> true 3.70/1.76 geq(n__0, n__s(Y)) -> false 3.70/1.76 geq(n__s(X), n__s(Y)) -> geq(activate(X), activate(Y)) 3.70/1.76 div(0, n__s(Y)) -> 0 3.70/1.76 div(s(X), n__s(Y)) -> if(geq(X, activate(Y)), n__s(n__div(n__minus(X, activate(Y)), n__s(activate(Y)))), n__0) 3.70/1.76 if(true, X, Y) -> activate(X) 3.70/1.76 if(false, X, Y) -> activate(Y) 3.70/1.76 0 -> n__0 3.70/1.76 s(X) -> n__s(X) 3.70/1.76 div(X1, X2) -> n__div(X1, X2) 3.70/1.76 minus(X1, X2) -> n__minus(X1, X2) 3.70/1.76 activate(n__0) -> 0 3.70/1.76 activate(n__s(X)) -> s(activate(X)) 3.70/1.76 activate(n__div(X1, X2)) -> div(activate(X1), X2) 3.70/1.76 activate(n__minus(X1, X2)) -> minus(X1, X2) 3.70/1.76 activate(X) -> X 3.70/1.76 3.70/1.76 S is empty. 3.70/1.76 Rewrite Strategy: FULL 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (9) DecreasingLoopProof (FINISHED) 3.70/1.76 The following loop(s) give(s) rise to the lower bound EXP: 3.70/1.76 3.70/1.76 The rewrite sequence 3.70/1.76 3.70/1.76 activate(n__div(n__s(X1_0), n__s(Y2_1))) ->^+ if(geq(activate(X1_0), activate(Y2_1)), n__s(n__div(n__minus(activate(X1_0), activate(Y2_1)), n__s(activate(Y2_1)))), n__0) 3.70/1.76 3.70/1.76 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 3.70/1.76 3.70/1.76 The pumping substitution is [X1_0 / n__div(n__s(X1_0), n__s(Y2_1))]. 3.70/1.76 3.70/1.76 The result substitution is [ ]. 3.70/1.76 3.70/1.76 3.70/1.76 3.70/1.76 The rewrite sequence 3.70/1.76 3.70/1.76 activate(n__div(n__s(X1_0), n__s(Y2_1))) ->^+ if(geq(activate(X1_0), activate(Y2_1)), n__s(n__div(n__minus(activate(X1_0), activate(Y2_1)), n__s(activate(Y2_1)))), n__0) 3.70/1.76 3.70/1.76 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0,0,0]. 3.70/1.76 3.70/1.76 The pumping substitution is [X1_0 / n__div(n__s(X1_0), n__s(Y2_1))]. 3.70/1.76 3.70/1.76 The result substitution is [ ]. 3.70/1.76 3.70/1.76 3.70/1.76 3.70/1.76 3.70/1.76 ---------------------------------------- 3.70/1.76 3.70/1.76 (10) 3.70/1.76 BOUNDS(EXP, INF) 4.09/1.84 EOF