319.88/291.54 WORST_CASE(Omega(n^1), ?) 319.88/291.54 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 319.88/291.54 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 319.88/291.54 319.88/291.54 319.88/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 319.88/291.54 319.88/291.54 (0) CpxTRS 319.88/291.54 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 319.88/291.54 (2) TRS for Loop Detection 319.88/291.54 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 319.88/291.54 (4) BEST 319.88/291.54 (5) proven lower bound 319.88/291.54 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 319.88/291.54 (7) BOUNDS(n^1, INF) 319.88/291.54 (8) TRS for Loop Detection 319.88/291.54 319.88/291.54 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (0) 319.88/291.54 Obligation: 319.88/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 319.88/291.54 319.88/291.54 319.88/291.54 The TRS R consists of the following rules: 319.88/291.54 319.88/291.54 from(X) -> cons(X, n__from(s(X))) 319.88/291.54 first(0, Z) -> nil 319.88/291.54 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 319.88/291.54 sel(0, cons(X, Z)) -> X 319.88/291.54 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 319.88/291.54 from(X) -> n__from(X) 319.88/291.54 first(X1, X2) -> n__first(X1, X2) 319.88/291.54 activate(n__from(X)) -> from(X) 319.88/291.54 activate(n__first(X1, X2)) -> first(X1, X2) 319.88/291.54 activate(X) -> X 319.88/291.54 319.88/291.54 S is empty. 319.88/291.54 Rewrite Strategy: FULL 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 319.88/291.54 Transformed a relative TRS into a decreasing-loop problem. 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (2) 319.88/291.54 Obligation: 319.88/291.54 Analyzing the following TRS for decreasing loops: 319.88/291.54 319.88/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 319.88/291.54 319.88/291.54 319.88/291.54 The TRS R consists of the following rules: 319.88/291.54 319.88/291.54 from(X) -> cons(X, n__from(s(X))) 319.88/291.54 first(0, Z) -> nil 319.88/291.54 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 319.88/291.54 sel(0, cons(X, Z)) -> X 319.88/291.54 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 319.88/291.54 from(X) -> n__from(X) 319.88/291.54 first(X1, X2) -> n__first(X1, X2) 319.88/291.54 activate(n__from(X)) -> from(X) 319.88/291.54 activate(n__first(X1, X2)) -> first(X1, X2) 319.88/291.54 activate(X) -> X 319.88/291.54 319.88/291.54 S is empty. 319.88/291.54 Rewrite Strategy: FULL 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (3) DecreasingLoopProof (LOWER BOUND(ID)) 319.88/291.54 The following loop(s) give(s) rise to the lower bound Omega(n^1): 319.88/291.54 319.88/291.54 The rewrite sequence 319.88/291.54 319.88/291.54 sel(s(X), cons(Y, Z)) ->^+ sel(X, Z) 319.88/291.54 319.88/291.54 gives rise to a decreasing loop by considering the right hand sides subterm at position []. 319.88/291.54 319.88/291.54 The pumping substitution is [X / s(X), Z / cons(Y, Z)]. 319.88/291.54 319.88/291.54 The result substitution is [ ]. 319.88/291.54 319.88/291.54 319.88/291.54 319.88/291.54 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (4) 319.88/291.54 Complex Obligation (BEST) 319.88/291.54 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (5) 319.88/291.54 Obligation: 319.88/291.54 Proved the lower bound n^1 for the following obligation: 319.88/291.54 319.88/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 319.88/291.54 319.88/291.54 319.88/291.54 The TRS R consists of the following rules: 319.88/291.54 319.88/291.54 from(X) -> cons(X, n__from(s(X))) 319.88/291.54 first(0, Z) -> nil 319.88/291.54 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 319.88/291.54 sel(0, cons(X, Z)) -> X 319.88/291.54 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 319.88/291.54 from(X) -> n__from(X) 319.88/291.54 first(X1, X2) -> n__first(X1, X2) 319.88/291.54 activate(n__from(X)) -> from(X) 319.88/291.54 activate(n__first(X1, X2)) -> first(X1, X2) 319.88/291.54 activate(X) -> X 319.88/291.54 319.88/291.54 S is empty. 319.88/291.54 Rewrite Strategy: FULL 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (6) LowerBoundPropagationProof (FINISHED) 319.88/291.54 Propagated lower bound. 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (7) 319.88/291.54 BOUNDS(n^1, INF) 319.88/291.54 319.88/291.54 ---------------------------------------- 319.88/291.54 319.88/291.54 (8) 319.88/291.54 Obligation: 319.88/291.54 Analyzing the following TRS for decreasing loops: 319.88/291.54 319.88/291.54 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(n^1, INF). 319.88/291.54 319.88/291.54 319.88/291.54 The TRS R consists of the following rules: 319.88/291.54 319.88/291.54 from(X) -> cons(X, n__from(s(X))) 319.88/291.54 first(0, Z) -> nil 319.88/291.54 first(s(X), cons(Y, Z)) -> cons(Y, n__first(X, activate(Z))) 319.88/291.54 sel(0, cons(X, Z)) -> X 319.88/291.54 sel(s(X), cons(Y, Z)) -> sel(X, activate(Z)) 319.88/291.54 from(X) -> n__from(X) 319.88/291.54 first(X1, X2) -> n__first(X1, X2) 319.88/291.54 activate(n__from(X)) -> from(X) 319.88/291.54 activate(n__first(X1, X2)) -> first(X1, X2) 319.88/291.54 activate(X) -> X 319.88/291.54 319.88/291.54 S is empty. 319.88/291.54 Rewrite Strategy: FULL 319.93/291.58 EOF