6.01/2.34 WORST_CASE(NON_POLY, ?) 6.01/2.35 proof of /export/starexec/sandbox/benchmark/theBenchmark.xml 6.01/2.35 # AProVE Commit ID: 48fb2092695e11cc9f56e44b17a92a5f88ffb256 marcel 20180622 unpublished dirty 6.01/2.35 6.01/2.35 6.01/2.35 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.01/2.35 6.01/2.35 (0) CpxTRS 6.01/2.35 (1) RelTrsToDecreasingLoopProblemProof [LOWER BOUND(ID), 0 ms] 6.01/2.35 (2) TRS for Loop Detection 6.01/2.35 (3) DecreasingLoopProof [LOWER BOUND(ID), 0 ms] 6.01/2.35 (4) BEST 6.01/2.35 (5) proven lower bound 6.01/2.35 (6) LowerBoundPropagationProof [FINISHED, 0 ms] 6.01/2.35 (7) BOUNDS(n^1, INF) 6.01/2.35 (8) TRS for Loop Detection 6.01/2.35 (9) DecreasingLoopProof [FINISHED, 472 ms] 6.01/2.35 (10) BOUNDS(EXP, INF) 6.01/2.35 6.01/2.35 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (0) 6.01/2.35 Obligation: 6.01/2.35 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.01/2.35 6.01/2.35 6.01/2.35 The TRS R consists of the following rules: 6.01/2.35 6.01/2.35 a__pairNs -> cons(0, incr(oddNs)) 6.01/2.35 a__oddNs -> a__incr(a__pairNs) 6.01/2.35 a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) 6.01/2.35 a__take(0, XS) -> nil 6.01/2.35 a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) 6.01/2.35 a__zip(nil, XS) -> nil 6.01/2.35 a__zip(X, nil) -> nil 6.01/2.35 a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) 6.01/2.35 a__tail(cons(X, XS)) -> mark(XS) 6.01/2.35 a__repItems(nil) -> nil 6.01/2.35 a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) 6.01/2.35 mark(pairNs) -> a__pairNs 6.01/2.35 mark(incr(X)) -> a__incr(mark(X)) 6.01/2.35 mark(oddNs) -> a__oddNs 6.01/2.35 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 6.01/2.35 mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) 6.01/2.35 mark(tail(X)) -> a__tail(mark(X)) 6.01/2.35 mark(repItems(X)) -> a__repItems(mark(X)) 6.01/2.35 mark(cons(X1, X2)) -> cons(mark(X1), X2) 6.01/2.35 mark(0) -> 0 6.01/2.35 mark(s(X)) -> s(mark(X)) 6.01/2.35 mark(nil) -> nil 6.01/2.35 mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) 6.01/2.35 a__pairNs -> pairNs 6.01/2.35 a__incr(X) -> incr(X) 6.01/2.35 a__oddNs -> oddNs 6.01/2.35 a__take(X1, X2) -> take(X1, X2) 6.01/2.35 a__zip(X1, X2) -> zip(X1, X2) 6.01/2.35 a__tail(X) -> tail(X) 6.01/2.35 a__repItems(X) -> repItems(X) 6.01/2.35 6.01/2.35 S is empty. 6.01/2.35 Rewrite Strategy: FULL 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (1) RelTrsToDecreasingLoopProblemProof (LOWER BOUND(ID)) 6.01/2.35 Transformed a relative TRS into a decreasing-loop problem. 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (2) 6.01/2.35 Obligation: 6.01/2.35 Analyzing the following TRS for decreasing loops: 6.01/2.35 6.01/2.35 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.01/2.35 6.01/2.35 6.01/2.35 The TRS R consists of the following rules: 6.01/2.35 6.01/2.35 a__pairNs -> cons(0, incr(oddNs)) 6.01/2.35 a__oddNs -> a__incr(a__pairNs) 6.01/2.35 a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) 6.01/2.35 a__take(0, XS) -> nil 6.01/2.35 a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) 6.01/2.35 a__zip(nil, XS) -> nil 6.01/2.35 a__zip(X, nil) -> nil 6.01/2.35 a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) 6.01/2.35 a__tail(cons(X, XS)) -> mark(XS) 6.01/2.35 a__repItems(nil) -> nil 6.01/2.35 a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) 6.01/2.35 mark(pairNs) -> a__pairNs 6.01/2.35 mark(incr(X)) -> a__incr(mark(X)) 6.01/2.35 mark(oddNs) -> a__oddNs 6.01/2.35 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 6.01/2.35 mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) 6.01/2.35 mark(tail(X)) -> a__tail(mark(X)) 6.01/2.35 mark(repItems(X)) -> a__repItems(mark(X)) 6.01/2.35 mark(cons(X1, X2)) -> cons(mark(X1), X2) 6.01/2.35 mark(0) -> 0 6.01/2.35 mark(s(X)) -> s(mark(X)) 6.01/2.35 mark(nil) -> nil 6.01/2.35 mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) 6.01/2.35 a__pairNs -> pairNs 6.01/2.35 a__incr(X) -> incr(X) 6.01/2.35 a__oddNs -> oddNs 6.01/2.35 a__take(X1, X2) -> take(X1, X2) 6.01/2.35 a__zip(X1, X2) -> zip(X1, X2) 6.01/2.35 a__tail(X) -> tail(X) 6.01/2.35 a__repItems(X) -> repItems(X) 6.01/2.35 6.01/2.35 S is empty. 6.01/2.35 Rewrite Strategy: FULL 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (3) DecreasingLoopProof (LOWER BOUND(ID)) 6.01/2.35 The following loop(s) give(s) rise to the lower bound Omega(n^1): 6.01/2.35 6.01/2.35 The rewrite sequence 6.01/2.35 6.01/2.35 mark(repItems(X)) ->^+ a__repItems(mark(X)) 6.01/2.35 6.01/2.35 gives rise to a decreasing loop by considering the right hand sides subterm at position [0]. 6.01/2.35 6.01/2.35 The pumping substitution is [X / repItems(X)]. 6.01/2.35 6.01/2.35 The result substitution is [ ]. 6.01/2.35 6.01/2.35 6.01/2.35 6.01/2.35 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (4) 6.01/2.35 Complex Obligation (BEST) 6.01/2.35 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (5) 6.01/2.35 Obligation: 6.01/2.35 Proved the lower bound n^1 for the following obligation: 6.01/2.35 6.01/2.35 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.01/2.35 6.01/2.35 6.01/2.35 The TRS R consists of the following rules: 6.01/2.35 6.01/2.35 a__pairNs -> cons(0, incr(oddNs)) 6.01/2.35 a__oddNs -> a__incr(a__pairNs) 6.01/2.35 a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) 6.01/2.35 a__take(0, XS) -> nil 6.01/2.35 a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) 6.01/2.35 a__zip(nil, XS) -> nil 6.01/2.35 a__zip(X, nil) -> nil 6.01/2.35 a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) 6.01/2.35 a__tail(cons(X, XS)) -> mark(XS) 6.01/2.35 a__repItems(nil) -> nil 6.01/2.35 a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) 6.01/2.35 mark(pairNs) -> a__pairNs 6.01/2.35 mark(incr(X)) -> a__incr(mark(X)) 6.01/2.35 mark(oddNs) -> a__oddNs 6.01/2.35 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 6.01/2.35 mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) 6.01/2.35 mark(tail(X)) -> a__tail(mark(X)) 6.01/2.35 mark(repItems(X)) -> a__repItems(mark(X)) 6.01/2.35 mark(cons(X1, X2)) -> cons(mark(X1), X2) 6.01/2.35 mark(0) -> 0 6.01/2.35 mark(s(X)) -> s(mark(X)) 6.01/2.35 mark(nil) -> nil 6.01/2.35 mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) 6.01/2.35 a__pairNs -> pairNs 6.01/2.35 a__incr(X) -> incr(X) 6.01/2.35 a__oddNs -> oddNs 6.01/2.35 a__take(X1, X2) -> take(X1, X2) 6.01/2.35 a__zip(X1, X2) -> zip(X1, X2) 6.01/2.35 a__tail(X) -> tail(X) 6.01/2.35 a__repItems(X) -> repItems(X) 6.01/2.35 6.01/2.35 S is empty. 6.01/2.35 Rewrite Strategy: FULL 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (6) LowerBoundPropagationProof (FINISHED) 6.01/2.35 Propagated lower bound. 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (7) 6.01/2.35 BOUNDS(n^1, INF) 6.01/2.35 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (8) 6.01/2.35 Obligation: 6.01/2.35 Analyzing the following TRS for decreasing loops: 6.01/2.35 6.01/2.35 The Runtime Complexity (full) of the given CpxTRS could be proven to be BOUNDS(EXP, INF). 6.01/2.35 6.01/2.35 6.01/2.35 The TRS R consists of the following rules: 6.01/2.35 6.01/2.35 a__pairNs -> cons(0, incr(oddNs)) 6.01/2.35 a__oddNs -> a__incr(a__pairNs) 6.01/2.35 a__incr(cons(X, XS)) -> cons(s(mark(X)), incr(XS)) 6.01/2.35 a__take(0, XS) -> nil 6.01/2.35 a__take(s(N), cons(X, XS)) -> cons(mark(X), take(N, XS)) 6.01/2.35 a__zip(nil, XS) -> nil 6.01/2.35 a__zip(X, nil) -> nil 6.01/2.35 a__zip(cons(X, XS), cons(Y, YS)) -> cons(pair(mark(X), mark(Y)), zip(XS, YS)) 6.01/2.35 a__tail(cons(X, XS)) -> mark(XS) 6.01/2.35 a__repItems(nil) -> nil 6.01/2.35 a__repItems(cons(X, XS)) -> cons(mark(X), cons(X, repItems(XS))) 6.01/2.35 mark(pairNs) -> a__pairNs 6.01/2.35 mark(incr(X)) -> a__incr(mark(X)) 6.01/2.35 mark(oddNs) -> a__oddNs 6.01/2.35 mark(take(X1, X2)) -> a__take(mark(X1), mark(X2)) 6.01/2.35 mark(zip(X1, X2)) -> a__zip(mark(X1), mark(X2)) 6.01/2.35 mark(tail(X)) -> a__tail(mark(X)) 6.01/2.35 mark(repItems(X)) -> a__repItems(mark(X)) 6.01/2.35 mark(cons(X1, X2)) -> cons(mark(X1), X2) 6.01/2.35 mark(0) -> 0 6.01/2.35 mark(s(X)) -> s(mark(X)) 6.01/2.35 mark(nil) -> nil 6.01/2.35 mark(pair(X1, X2)) -> pair(mark(X1), mark(X2)) 6.01/2.35 a__pairNs -> pairNs 6.01/2.35 a__incr(X) -> incr(X) 6.01/2.35 a__oddNs -> oddNs 6.01/2.35 a__take(X1, X2) -> take(X1, X2) 6.01/2.35 a__zip(X1, X2) -> zip(X1, X2) 6.01/2.35 a__tail(X) -> tail(X) 6.01/2.35 a__repItems(X) -> repItems(X) 6.01/2.35 6.01/2.35 S is empty. 6.01/2.35 Rewrite Strategy: FULL 6.01/2.35 ---------------------------------------- 6.01/2.35 6.01/2.35 (9) DecreasingLoopProof (FINISHED) 6.01/2.35 The following loop(s) give(s) rise to the lower bound EXP: 6.01/2.35 6.01/2.35 The rewrite sequence 6.01/2.35 6.01/2.35 mark(repItems(cons(X11_0, X22_0))) ->^+ cons(mark(mark(X11_0)), cons(mark(X11_0), repItems(X22_0))) 6.01/2.36 6.01/2.36 gives rise to a decreasing loop by considering the right hand sides subterm at position [0,0]. 6.01/2.36 6.01/2.36 The pumping substitution is [X11_0 / repItems(cons(X11_0, X22_0))]. 6.01/2.36 6.01/2.36 The result substitution is [ ]. 6.01/2.36 6.01/2.36 6.01/2.36 6.01/2.36 The rewrite sequence 6.01/2.36 6.01/2.36 mark(repItems(cons(X11_0, X22_0))) ->^+ cons(mark(mark(X11_0)), cons(mark(X11_0), repItems(X22_0))) 6.01/2.36 6.01/2.36 gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0]. 6.01/2.36 6.01/2.36 The pumping substitution is [X11_0 / repItems(cons(X11_0, X22_0))]. 6.01/2.36 6.01/2.36 The result substitution is [ ]. 6.01/2.36 6.01/2.36 6.01/2.36 6.01/2.36 6.01/2.36 ---------------------------------------- 6.01/2.36 6.01/2.36 (10) 6.01/2.36 BOUNDS(EXP, INF) 6.09/2.40 EOF